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w~  Singularity Functions

m Introduction

— The integration method discussed earlier
becomes tedious and time-consuming
when several intervals and several sets of
matching conditions are needed.

— We noticed from solving deflection
problems by the integration method that
the shear and moment could only rarely
described by a single analytical function.
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m [ntroduction

— For example the cantilever beam of Figure
9a is a special case where the shear V and
bending moment M can be represented by
a single analytical function, that is

V(x)=w(L-x) (15a)
and
M(x):w(—L2+2Lx—x2) (15b)
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m Introduction
Figure 9
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m [ntroduction
— While for the beam of Figure 9b, the shear

V or moment M cannot be expressed in a
single analytical function. In fact, they
should be represented for the three
intervals, namely

0<x<L/4,

L/4<x<L/2,and

L/2<x<L
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m Introduction
— For the three intervals, the shear V and the
bending moment M can are given,
respectively, by

P+W7L for0<x<L/4

wlL for LIA<x<L/2

o
wL ( —%) for L/2<x<L
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m Introduction
and
2
—ﬂ—%}L +Px+W—Lx for0<x<L/4
4 8 2
2
M(x) = —3ng +W7Lx for LIA<x<L/2
2 2
—3WL W—Lx—K x—£ for L/2<x<L
s 2 207 2
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m [ntroduction

— We see that even with a cantilever beam
subjected to two simple loads, the
expressions for the shear and bending
moment become complex and more
involved.

— Sinqularity functions can help reduce this
labor by making V or M represented by a
single analytical function for the entire
length of the beam.
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m Basis for Singularity Functions

— Singularity functions are closely related to
he unit step function used to analyze the
transient response of electrical circuits.

— They will be used herein for writing one
bending moment equation (expression)
that applies in all intervals along the beam,
thus eliminating the need for matching
equations, and reduce the work involved.
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m Definition

A singularity function is an expression for x
written as (x—x,)", where n is any integer
(positive or negative) including zero, and x
is a constant equal to the value of x at the
initial boundary of a specific interval along
the beam.
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m Properties of Singularity Functions

— By definition, for n > 0,

x—x,) whenx2 x,
0

(x %) = (16)

0 when x < x,

— Selected properties of singularity functions
that are useful and required for beam-
deflection problems are listed in the next
slides for emphasis and ready reference
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m Selected Properties

e by (x—x,) whenn>0andx>x, (17)
; 0 whenn >0and x < x,
< >0 1 when n > 0and x > x,
e
o 0 when n > 0and x < x, (18)

N
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m Integration and Differentiation of

Singularity Functions
1

J.<x—x0>"dx=m<x—x0>n+l+c whenn>0  (19)

i(x —Xo) =n{x- x0>"'1 whenn >0 (20)

AT

*  Singularity Functions
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m Examples: Singularity Functions

() Figure 10 (b)
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m Examples: Singularity Functions

v

-1 1 2 3 -1 1 2 3
(© Figure 10 ()
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i Singularity Functions

m Application of Singularity Functions in
Developing a Single Equation to
Describe the Bending Moment
— By making use of singularity functions

properties, a single equation (expression)
for the bending moment for a beam can be
obtained.

— Also, the corresponding value of M in any
interval can be computed.
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m Application of Singularity Functions in
Developing a Single Equation to
Describe the Bending Moment
— To illustrate this, consider the beam of the

following figure (Fig.11).
— The moment equations at the four

designated sections are written as shown
in the following slide.
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m Applications of Singularity Functions in
Developing a Single Equation to
Describe the Bending Moment

M, =R, x for0<x<x
M2:RLx—P(x—x1) forx, <x<x,
M, =R,x—P(x—x)+M, for x, < x < x; (21)

M,=R,x—Px—x)+M, —@ forx, <x<x,




o
s

LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 — 9.6) Slide No. 18
ENES 220 ©Assakkaf

i~ Singularity Functions

—,

m Application of Singularity Functions in
Developing a Single Equation to
Describe the Bending Moment

~

Figure 11
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Singularity Functions

m Application of Singularity Functions in
Developing a Single Equation to
Describe the Bending Moment

— These for moment equations can be
combined into a single equations by means
of singularity functions to give

M(x)zRLx—P<x—x1>l +MA<)c—x2>O —%(x—)@)z for0<x<L (22)

Where M(x) indicates that the moment is a function of x.
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m Typical Singularity Functions

e

M(x)z RLx—P<x—xl>I +MA<4x—x2>0

" : (22)
——<x—x3> forO<e= [
2
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Singularity Functions

m Notes on Distributed Loads

— When using singularity functions to
describe bending moment along the beam
length, special considerations must be
taken when representing distributed loads,
such as those shown in Figure 12.

— The distributed load cannot be represented
by a single function of x for all values of x.
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m Notes on Distributed Loads

— The distributed loading should be an open-
ended to the right (Figure 11) of the beam
when we apply the singularity function.

— A distributed loading which does not
extend to the right end of the beam or
which is discontinuous should be replaced
as shown in Figures by an equivalent
combination of open-ended loadings.
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i Singularity Functions

m Notes on Distributed Loads

— Examples of open-ended-to-right
distributed loads, which are ready for
singularity function use are shown in
Figure 12.

— Examples of non open-ended-to-right or
discontinuous distributed loads are shown
in Figures 13, 14, and 15.
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m Moment due to Distributed Loads

el M, = ke

n+2

Figure 12. Open-ended-to-right distributed loads
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m Moment due to Distributed Loads

The moment at section 1
due to distributed load

Figure 13 | ‘ alone is

=—%<x—0>2+%<x—xl>2

Wwo
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m Moment due to Distributed Loads
y

The moment at section 1
- 7] due to distributed load
Figure 14 | | alone is

w, W,
:—7°<x—xl>2 +7°<x—x2>2
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m Moment due to Distributed Loads
wo())

Y

W L—x = w = WO(L—XI)
X Wo Xy =X X, =X
The moment at section 1
due to distributed load

alone is

w, W,

Moo Mo N W
" 6(x2_x1)<x XI> +6(xz_x1)<x xz>

2
Wy (X — X,
o5 s

Figure 15
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m Moment due to Distributed Loads
Note that in Fig. 14, the linearly varying

v

Hy

b i
M-

g

Nl

g
-
T L

ih

T Lo

UhiL,

load at any point x > x, is
w, w
X WolX —X
it B W= o( 1)
N X, — X
X, ‘ 2 . 1
x | The moment of this load for
From similar triangles : . .
Any point x > x, is
w_*h
Yo BT M=t WO(X_XI)(x—x)(x_XIjz P (r-x)
2| x,—x : 3 6(x2 —xl) :
1"'-‘;% LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 — 9.6) Slide No. 29
Singularity Functions

m Example 4
Use singularity functions to write the
moment equation for the beam shown in
Figure 16. Employ this equation to obtain

the elastic curve, and find the deflection at
Figure 16

x=10ft. » 2000 Ib/ft
E =29x10°psi x
I =464in*
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m Example 4 (cont’d)

Y 2000 Ib/ft

Find the reactions:

+ (ZM2 =0; R, (16)—2000(15)(5+%) =0
~ R =23,437.51b

+ 1> F, =0; R +R,—2000(15)=30,000
~ R, =6,562.51b

»)%\1"‘-“’»(’ LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 — 9.6) Slide No. 31

g 3
% —————————
A ﬁ. y ENES 220 ©Assakkaf

i~ Singularity Functions

m Example 4 (cont’d)

A single expression for the bending
moment can be obtained using the
singularity functions:

$5ft7\]R2

_2000(x)* | 2000(x—15)’
2

‘%m *I} 1 ft >
1

+23,437.5(x-4)" | (23a)
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The elastic curve is found by integrating
Eq. 23 twice
2 2000(x-15)°
ED" = M(x)= _20020" " <’; L 23437.5(x-4)
3 2000(x—15)"  23,437.5(x—4)’
Ely'=EIf = —zooo%+ <2 . =4 +C, (23b)
£ 20005 2000(x—15)"  23,437.5(x—4)’ S
ly =— ng 24 + ‘ +Cx+Cy (23¢)
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m Example 4 (cont’d)

Boundary conditions:
y=0atx=4ftand at x =20 ft

4 2000& 15)" 2343\7\54 4)’
Ely(4)=0=-2000"_- 2)\ +C,(4)+C,

0 0
S 4C +C, =213333 (23d)

4 2000(20-15)"  23,437.5(20-4)’
EIy(20)=0:—2000(22(1) + <24 ) + { )

+C,(20)+C,

.20C, +C, = 2,718,750 (23e)




:»?;‘w‘-};( LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 — 9.6) Slide No. 34

—
W ﬁ‘ £ ENES 220 ©Assakkaf

o-  Singularity Functions

[ —,

-]

m Example 4 (cont'd)

From Eqs 23d and 23e, the constants of
integrations are found to

C, =168,588.54 and C,=-653,020.88

Therefore, the elastic curve is given by

(G 2000(x -15)" . 23,437.5(x —4)’
24 24

y(x) zé —2000 +168,588.5x —653,020.9

(231)
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m Example 4 (cont'd)

The deflection at any point along the beam
can be calculated using Eq. 23f (elastic
curve equation). Therefore, the deflection
yatx=10ftis 0

(10 2000(10=T5)"  23,437.5(10—4)°
10) = — | —2000-—~—+ + +168,588.5(10) - 653,020.9
y = 6

1
EI 24 24

y10y=—12)

=7 [-833,333.3+843,750+1,685,885 - 653,020.9]
29x10°(464)

Vi =0.011165 ft =0.1339in
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m Example 5

A beam is loaded and supported as
shown in Figure 17. Use singularity
functions to determine, in terms of M, L,
E, and /,

a) The deflection at the middle of the span.
b) The maximum deflection of the beam.
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m Example 5 (cont’d)
Ly

1

: M

1

: I E I

Figure 17
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m Example 5 (cont’d)
First find the reactions R, and Rg:

4
1
| I M
| E, 1 _0- _
= ’ +(ZMC—O,RA(2L)+M—0
b
M
LR =——
[, L ‘ ' R, 2L
Rk o) L >
+TY F,=0;R,+R, =0
M
"R, =—
oL
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m Example 5 (cont’d)

Singularity functions to describe the
bending moment:

Iy

! [, M(x):—%+M<x—L>O (24a)
= = B 2L
b >

) M

B 4 X
Ely :—Z+M<x—L>0 (24b)
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m Example 5 (cont’d)
Integrating Eq. 24.b twice, we get

ED" = —%+M<X—L>O

M:
ED =-="— 1 M{x-L)' +C (24c)
AL
2
Mx® M{x—L
Ely=-""1+ x-1) +Cx+C,  (24d)
12L 2
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m Example 5 (cont’d)
Boundary conditions:

Atx=0,y=0 Therefore: C, =0
Atx=2L,y=0 Therefore: C,= ML/12
Thus,
= — X +6L{(x— LY + ’x
Y=g E,L[ (=L + 0] (240

M
__ M 1y 3| 24
n(L) 48EIL[ L+E ] _0 (241)
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m Example 5 (cont’d)
(b) Finding the maximum deflection:

V' Z%[—%f +12L<x—L>1 +L2] Ve When y' =0

Therefore : —3x3+12<x—L>1+L2=0 = x=L/\/§

M r r 2ML

= WL/B)m | - e e | =

Yo = HLIN) 12EIL[ 33 \/5} 363/3E1
_Bmr

 S4EI




