
1

• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering• A. J. Clark School of Engineering •Department of Civil and Environmental Engineering

Third Edition
LECTURE

17
9.5 – 9.6

Chapter

BEAMS: DEFORMATION BY 
SINGULARITY FUNCTIONS 

by
Dr. Ibrahim A. Assakkaf

SPRING 2003
ENES 220 – Mechanics of Materials

Department of Civil and Environmental Engineering
University of Maryland, College Park

LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Slide No. 1
ENES 220 ©Assakkaf

Singularity Functions

Introduction
– The integration method discussed earlier 

becomes tedious and time-consuming 
when several intervals and several sets of 
matching conditions are needed.

– We noticed from solving deflection 
problems by the integration method that 
the shear and moment could only rarely 
described by a single analytical function.
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Singularity Functions

Introduction
– For example the cantilever beam of Figure 

9a is a special case where the shear V and 
bending moment M can be represented by 
a single analytical function, that is

( ) ( )

( ) ( )22 2          
and
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Singularity Functions

Introduction
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Singularity Functions

Introduction
– While for the beam of Figure 9b, the shear 

V or moment M cannot be expressed in a 
single analytical function.  In fact, they 
should be represented for the three 
intervals, namely

0 ≤ x ≤ L/4,
L/4 ≤ x ≤ L/2, and
L/2 ≤ x ≤ L

LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Slide No. 5
ENES 220 ©Assakkaf

Singularity Functions

Introduction
– For the three intervals, the shear V and the 

bending moment M can are given, 
respectively, by
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Singularity Functions

Introduction
and
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Singularity Functions

Introduction
– We see that even with a cantilever beam 

subjected to two simple loads, the 
expressions for the shear and bending 
moment become complex and more 
involved.

– Singularity functions can help reduce this 
labor by making V or M represented by  a 
single analytical function for the entire 
length of the beam. 
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Singularity Functions

Basis for Singularity Functions
– Singularity functions are closely related to 

he unit step function used to analyze the 
transient response of electrical circuits.

– They will be used herein for writing one 
bending moment equation (expression) 
that applies in all intervals along the beam, 
thus eliminating the need for matching 
equations, and reduce the work involved.
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Singularity Functions

Definition
A singularity function is an expression for x
written as            , where n is any integer 
(positive or negative) including zero, and x0
is a constant equal to the value of x at the 
initial boundary of a specific interval along 
the beam. 

nxx 0−
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Singularity Functions

Properties of Singularity Functions
– By definition, for n ≥ 0,

– Selected properties of singularity functions 
that are useful and required for beam-
deflection problems are listed in the next 
slides for emphasis and ready reference.
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Singularity Functions

Selected Properties

( )






<>
≥>−

=−
0

00
0  and 0       when          0

 and 0    when 
xxn
xxnxxxx

n
n





<>
≥>

=−
0

00
0  and 0       when          0

 and 0       when          1
xxn
xxn

xx

(17)

(18)



7

LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Slide No. 12
ENES 220 ©Assakkaf

Singularity Functions

Integration and Differentiation of 
Singularity Functions
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Examples: Singularity Functions
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Examples: Singularity Functions
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Singularity Functions

Application of Singularity Functions in 
Developing a Single Equation to 
Describe the Bending Moment
– By making use of singularity functions 

properties, a single equation (expression) 
for the bending moment for a beam can be 
obtained.

– Also, the corresponding value of M in any 
interval can be computed. 
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Singularity Functions

Application of Singularity Functions in 
Developing a Single Equation to 
Describe the Bending Moment
– To illustrate this, consider the beam of the 

following figure (Fig.11).
– The moment equations at the four 

designated sections are written as shown 
in the following slide.
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Singularity Functions

Applications of Singularity Functions in 
Developing a Single Equation to 
Describe the Bending Moment
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Singularity Functions

Application of Singularity Functions in 
Developing a Single Equation to 
Describe the Bending Moment
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Singularity Functions

Application of Singularity Functions in 
Developing a Single Equation to 
Describe the Bending Moment
– These for moment equations can be 

combined into a single equations by means 
of singularity functions to give

Where M(x) indicates that the moment is a function of x.
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Singularity Functions

Typical Singularity Functions
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Singularity Functions

Notes on Distributed Loads
– When using singularity functions to 

describe bending moment along the beam 
length, special considerations must be 
taken when representing distributed loads, 
such as those shown in Figure 12.

– The distributed load cannot be represented 
by a single function of x for all values of x.
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Singularity Functions

Notes on Distributed Loads
– The distributed loading should be an open-

ended to the right (Figure 11) of the beam 
when we apply the singularity function.

– A distributed loading which does not 
extend to the right end of the beam or 
which is discontinuous should be replaced 
as shown in Figures  by an equivalent 
combination of open-ended loadings.
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Singularity Functions

Notes on Distributed Loads
– Examples of open-ended-to-right 

distributed loads, which are ready for 
singularity function use are shown in 
Figure 12.

– Examples of non open-ended-to-right or 
discontinuous distributed loads are shown 
in Figures 13, 14, and 15.
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Singularity Functions

Moment due to Distributed Loads
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Singularity Functions

Moment due to Distributed Loads
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Moment due to Distributed Loads
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Singularity Functions
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Moment due to Distributed Loads

The moment at section 1
due to distributed load
alone is
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Singularity Functions
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Singularity Functions

Moment due to Distributed Loads
Note that in Fig. 14, the linearly varying 
load at any point x ≥ x1 is
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Singularity Functions

Example 4
Use singularity functions to write the 
moment equation for the beam shown in 
Figure 16.  Employ this equation to obtain 
the elastic curve, and find the deflection at 
x = 10 ft.
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4 ft 11 ft 5 ft

Figure 16
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Singularity Functions

Example 4 (cont’d)

x

y 2000 lb/ft
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Singularity Functions

Example 4 (cont’d)
A single expression for the bending 
moment can be obtained using the 
singularity functions:

x

y 2000 lb/ft

4 ft 11 ft 5 ftR1 R2

( ) ( ) 1
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Singularity Functions

Example 4 (cont’d)
The elastic curve is found by integrating 
Eq. 23 twice
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Singularity Functions

Example 4 (cont’d)
Boundary conditions:

y = 0 at x = 4 ft and at x = 20 ft

750,718,220

)20(
6
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Singularity Functions

Example 4 (cont’d)
From Eqs 23d and 23e, the constants of 
integrations are found to

Therefore, the elastic curve is given by

88.020,653     and      54.588,168 21 −== CC












−+

−
+

−
+−= 9.020,6535.588,168

6
45.437,23

24
152000

24
)(20001)(

344

x
xxx

EI
xy

(23f)

LECTURE 16. BEAMS: DEFORMATION BY SINGULARITY FUNCTIONS (9.5 – 9.6) Slide No. 35
ENES 220 ©Assakkaf

Singularity Functions

Example 4 (cont’d)
The deflection at any point along the beam 
can be calculated using Eq. 23f (elastic 
curve equation).  Therefore, the deflection 
y at x = 10 ft is
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Singularity Functions

Example 5
A beam is loaded and supported as 
shown in Figure 17.  Use singularity 
functions to determine, in terms of M, L, 
E, and I,

a) The deflection at the middle of the span.
b) The maximum deflection of the beam.
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Singularity Functions

Example 5 (cont’d)
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Singularity Functions

Example 5 (cont’d)
First find the reactions RA and RB:
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Singularity Functions

Example 5 (cont’d)
Singularity functions to describe the 
bending moment:
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Singularity Functions

Example 5 (cont’d)
Integrating Eq. 24.b twice, we get
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Singularity Functions

Example 5 (cont’d)
Boundary conditions:

At x = 0, y = 0             Therefore: C2 = 0
At x = 2L, y = 0            Therefore: C1= ML/12

Thus,
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Singularity Functions

Example 5 (cont’d)
(b) Finding the maximum deflection:
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