
 1

LECTURE-13

STRING OPERATION

13.1 introduction : We have been using strings in our previous lecture without
going deep into its properties. In the present lecture we will study the strings in
details.

Combination of characters is called a string. For example, “ My name is
Vikram Singh” is a string. One can print a string as:

cout<<’\n My name is Vikram Singh”;

As you may already know, the C++ Standard Library implements a
powerful string class, which is very useful to handle and manipulate strings of
characters. However, because strings are in fact sequences of characters, we
can represent them also as plain arrays of char elements.

For example, the following array:

char city [20];

is an array that can store up to 20 elements of type char. It can be represented
as:

Therefore, in this array, in theory, we can store sequences of characters
up to 20 characters long. But we can also store shorter sequences. For example,
‘city’ could store at some point in a program either the sequence "Hello" or the
sequence "Merry christmas", since both are shorter than 20 characters.

Therefore, since the array of characters can store shorter sequences than
its total length, a special character is used to signal the end of the valid sequence:
the null character, whose literal constant can be written as '\0' (backslash, zero).

Our array of 20 elements of type char, called jenny can be represented storing
the characters sequences "Hello" and "Merry Christmas" as:

 2

NB : Notice how after the valid content a null character ('\0') has been included in
order to indicate the end of the sequence. The panels in gray color represent
char elements with undetermined values.

13.2 Initialization of null-terminated character
sequences

Because arrays of characters are ordinary arrays , they follow all their
same rules. For example, if we want to initialize an array of characters with some
predetermined sequence of characters we can do it just like any other array:

char myword[] = { 'H' , 'e', 'l' , 'l' , 'o', '\0' };

In this case we would have declared an array of 6 elements of type char
initialized with the characters that form the word "Hello" plus a null character '\0'
at the end.

But arrays of char elements have an additional method to initialize their
values: using string literals.

In the expressions we have used in some examples in previous chapters,
constants that represent entire strings of characters have already showed up
several times. These are specified enclosing the text to become a string literal
between double quotes ("). For example:

"the result is: "

is a constant string literal that we have probably used already.

Double quoted strings (") are literal constants whose type is in fact a null-
terminated array of characters. So string literals enclosed between double quotes
always have a null character ('\0') automatically appended at the end.

Therefore we can initialize the array of char elements called myword with a null-
terminated sequence of characters by either one of these two methods:

char myword [] = { 'H', 'e', 'l', 'l', 'o', '\0' };

 char myword [] = "Hello";

In both cases the array of characters myword is declared with a size of 6
elements of type char: the 5 characters that compose the word "Hello" plus a
final null character ('\0') which specifies the end of the sequence and that, in the
second case, when using double quotes (") it is appended automatically.

 3

Please notice that we are talking about initializing an array of characters in the
moment it is being declared, and not about assigning values to them once they
have already been declared. In fact because this type of null-terminated arrays of
characters are regular arrays we have the same restrictions that we have with
any other array, so we are not able to copy blocks of data with an assignment
operation.

Assuming mytext is a char[] variable, expressions within a source code like:

mystext = "Hello";
mystext[] = "Hello";

would not be valid, like neither would be:

mystext = { 'H', 'e', 'l' , 'l', 'o', '\0' };

The reason for this may become more comprehensible once you know a bit more
about pointers, since then it will be clarified that an array is in fact a constant
pointer pointing to a block of memory.

13.3 Using null-terminated sequences of characters

Null-terminated sequences of characters are the natural way of treating strings in
C++, so they can be used as such in many procedures. In fact, regular string
literals have this type (char[]) and can also be used in most cases.

For example, cin and cout support null-terminated sequences as valid containers
for sequences of characters, so they can be used directly to extract strings of
characters from cin or to insert them into cout. For example:

Program 13.1: Null-terminated sequences of characters

// null-terminated sequences of characters
#include <iostream>
using namespace std;

int main ()
{
 char question[] = "Please, enter your first name: ";
 char greeting[] = "Hello, ";
 char yourname [80];
 cout << question;
 cin >> yourname;
 cout << greeting << yourname << "!";
 return 0;
}

Please,
enter
your
first
name:
John
Hello,
John!

 4

As you can see, we have declared three arrays of char elements. The first two
were initialized with string literal constants, while the third one was left
uninitialized. In any case, we have to speficify the size of the array: in the first two
(question and greeting) the size was implicitly defined by the length of the literal
constant they were initialized to. While for yourname we have explicitly specified
that it has a size of 80 chars.

Finally, sequences of characters stored in char arrays can easily be converted
into string objects just by using the assignment operator:

string mystring;
char myntcs[]="some text";

 mystring = myntcs;

13.4 Initialising multiple strings

 In case e have to use data involving multiple strings, e initialize string as
char city [10][20]; To understand multiple string operation let us study program
13.2.

Program 13.2 : Initializing multiple strings

#include <conio.h>
#include <conio.h>
using namespace std;

void main()
{
 char city[5][20];int i;
 cout<<"Enter names of ten cities:";
 for (i=0; i<5; i++)
 {
 cin>> city[i];
 }
 cout <<"Names of the cities are:";
 for (i=0; i<=5; i++)
 {
 cout<< city[i];
 }
}
/*Output
Enter names of ten cities:Delhi Calcutta Ludhiana Chandigarh Amritsar
Rupnagar
Names of the cities are:DelhiCalcuttaLudhianaChandigarhAmritsar¦¦¦¦£9-
É+ ?Press
any key to continue . . .*/
In the above program first bracket shos e chan enter five names and second
shos each name can be of length of 20 characters.

13.5 String handling Functions

 5

C++ language is rich in library functions, but to handle or operate some strings, e
ill discuss some of the functions goven below. These functions are included in
header file <string.h> , which e have to include in the program. These functions
are:

(i) strcat():

(ii) strcmp():

(iii) strcpy():

(iv) strlen():

(i) strcat(): The purpose of strcat() is to concatenate or combine two strings
together. The general syntax used for this is as:

 strcat(string1,string2);

Also e can combine more than to strings as below:

 strcat(strcat(string1,string2),string3);

(ii) strcmp(): The purpose of this function is to compare two strings. The general
syntax is :

 strcmp(string1,string2);

strcmp will test two strings for equallity.

 Returns :
 < 0 if s1 is less than s2
 0 if s1 == s2
 > 0 if s1 is greater than s2

This function probably provides too much information by indicating which string is
lexicographically greater. The net result means that the strcmp return code is
logically incorrect because it returns a FALSE value when the strings match.
Folloing program illustrates the function of strcmp():

Program 13.3: use strcmp()
int StringCompare(char *s1, char *s2);

main()
{
 char One[] = "Bartman";
 char Two[] = "Batman";

 int Ret;

 Ret = StringCompare(One, Two);

 if (Ret == TRUE)
 {
 puts("The Strings match");
 }
 else

 6

 {
 puts("The Strings do not match");
 }
}

/**/

int StringCompare(char *s1, char *s2)
{
 int Ret;

 if (strcmp(s1, s2))
 {
 Ret = 0;
 }
 else
 {
 Ret = 1;
 }

 return (Ret);
}

(iii)strcpy(): strcpy copies a string. This function will copy the bytes stored at
the location pointed to by 's2' to the location pointed to by 's1'.

 s1 s2
 | |
 V V
 - - - - - - - --
 | | | | | |a|b|c|\0|
 - - - - - - - --
 ^ ^ | |
 | | | |
 -|------------- |

Code given below illustrates the functioning of strcpy().
library: string.h

Prototype: char strcpy(char *s1, const char *s2);

Syntax:
 char string2[20]="red dwarf";
 char string1[20]="";
 strcpy(string1, string2);

(iv) strlen():strlen will give you the length of a string, NOT including the '\0'
terminator. It should not be confused with the sizeof operator which returns the
size of a variable (that could hold a string).

Library: string.h

 7

Prototype: size_t strlen(const char *s);

Syntax: size_t size;
 char string[20]="red dwarf";
 size = strlen(string);

Program 13.4 : Example of strlen().
/***
 *
 * Purpose: Reverse characters in a string.
 *
 ***/

void reverse(char s[]);

main()
{
 char text[80]="martin";

 printf("string is %s\n", text);
 reverse(text);
 printf("string is %s\n", text);
}

void reverse(char s[])
{
 int c, i, j;

 for (i=0, j=strlen(s)-1; i < j;i++, j--)
 {
 c = s[i];
 s[i] = s [j];
 s[j] = c;
 }
}

