
Lecture-6

Operators

Once we know of the existence of variables and constants, we can begin to
operate with them. For that purpose, C++ integrates operators. Unlike other
languages whose operators are mainly keywords, operators in C++ are mostly
made of signs that are not part of the alphabet but are available in all keyboards.
This makes C++ code shorter and more international, since it relies less on
English words, but requires a little of learning effort in the beginning.

You do not have to memorize all the content of this page. Most details are only
provided to serve as a later reference in case you need it.

6.1 Assignation (=)

The assignation operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of
the assignation operator (=) is known as the lvalue (left value) and the right one
as the rvalue (right value). The lvalue has to be a variable whereas the rvalue
can be either a constant, a variable, the result of an operation or any combination
of these.The most important rule of assignation is the right-to-left rule: The
assignation operation always takes place from right to left, and never the other
way:

a =b;

This statement assigns to variable a (the lvalue) the value contained in variable b
(the rvalue). The value that was stored until this moment in a is not considered at
all in this operation, and in fact that value is lost.

Consider also that we are only assigning the value of b to a at the moment of the
assignation. Therefore a later change of b will not affect the new value of a.

For example, let us have a look at the following code - I have included the
evolution of the content stored in the variables as comments:

// Progrma to demonstrate assignation operator

#include <iostream>
using namespace std;

int main ()

{
 int a, b; // a:?, b:?
 a = 10; // a:10, b:?
 b = 4; // a:10, b:4
 a = b; // a:4, b:4
 b = 7; // a:4, b:7

 cout << "a:";
 cout << a;
 cout << " b:";
 cout << b;

 return 0;

}

This code will give us as result that the value contained in a is 4 and the one
contained in b is 7. Notice how a was not affected by the final modification of b,
even though we declared a = b earlier (that is because of the right-to-left rule).

A property that C++ has over other programming languages is that the
assignation operation can be used as the rvalue (or part of an rvalue) for another
assignation. For example:

a = 2 + (b = 5);

is equivalent to:

b = 5;

a = 2 + b;

that means: first assign 5 to variable b and then assign to a the value 2 plus the
result of the previous assignation of b (i.e. 5), leaving a with a final value of 7.

The following expression is also valid in C++:

a = b = c = 5;

It assigns 5 to the all the three variables: a, b and c.

6.2 Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are:

+ addition

- subtraction

* multiplication

/ division

% modulo

Operations of addition, subtraction, multiplication and division literally correspond
with their respective mathematical operators. The only one that you might not be
so used to see may be modulo; whose operator is the percentage sign (%).
Modulo is the operation that gives the remainder of a division of two values. For
example, if we write:

a = 11 % 3;

the variable a will contain the value 2, since 2 is the remainder from dividing 11
between 3.

6.3 Compound assignation (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an operation on
the value currently stored in that variable we can use compound assignation
operators:

expression is equivalent to

value += increase; value = value + increase;

a -= 5; a = a - 5;

a /= b; a = a / b;

price *= units + 1; price = price * (units + 1);

and the same for all other operators. For example:

// compund assignation

#include <iostream>
using namespace std;

int main ()
{
 int a, b=3;
 a = b;
 a+=2; // equivalent to a=a+2
 cout << a;

5

 return 0;
}

6.4 Increase and decrease (++, --)

Shortening even more some expressions, the increase operator (++) and the
decrease operator (--) increase or reduce by one the value stored in a variable.
They are equivalent to +=1 and to -=1, respectively. Thus:

a++;
a+=1;
a=a+1;

are all equivalent in its functionality: the three of them increase by one the value
of c.

A characteristic of ++ operator is that it can be used both as a prefix and as a
suffix. That means that it can be written either before the variable identifier (++a)
or after it (a++). In the case that the increase operator is used as a prefix (++a)
the value is increased before the result of the expression is evaluated and
therefore the increased value is considered in the outer expression; in case that it
is used as a suffix (a++) the value stored in a is increased after being evaluated
and therefore the value stored before the increase operation is evaluated in the
outer expression. Notice the difference:

Example 1 Example 2

B=3;
A=++B;
// A contains 4, B contains 4

B=3;
A=B++;
// A contains 3, B contains 4

In Example 1, B is increased before its value is copied to A. While in Example 2,
the value of B is copied to A and then B is increased.

6.5 Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the
relational and equality operators. The result of a relational operation is a Boolean
value that can only be true or false, according to its Boolean result.

We may want to compare two expressions, for example, to know if they are equal
or if one is greater than the other is. Here is a list of the relational and equality
operators that can be used in C++:

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Here there are some examples:

(7 == 5) // evaluates to false.
(5 > 4) // evaluates to true.
(3 != 2) // evaluates to true.
(6 >= 6) // evaluates to true.
(5 < 5) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid
expression, including variables. Suppose that a=2, b=3 and c=6,

(a == 5) // evaluates to false since a is not equal to 5.
(a*b >= c) // evaluates to true since (2*3 >= 6) is true.
(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.
((b=2) == a) // evaluates to true.

Be careful! The operator = (one equal sign) is not the same as the operator ==
(two equal signs), the first one is an assignation operator (assigns the value at its
right to the variable at its left) and the other one (==) is the equality operator that
compares whether both expressions in the two sides of it are equal to each other.
Thus, in the last expression ((b=2) == a), we first assigned the value 2 to b and
then we compared it to a, that also stores the value 2, so the result of the
operation is true.

6.6 Logical operators (!, &&, ||)

The Operator ! is the C++ operator to perform the Boolean operation NOT, it has
only one operand, located at its right, and the only thing that it does is to inverse
the value of it, producing false if its operand is true and true if its operand is false.
Basically, it returns the opposite Boolean value of evaluating its operand. For
example:

!(5 == 5) // evaluates to false because the expression at its right (5 == 5)

is true.
!(6 <= 4) // evaluates to true because (6 <= 4) would be false.
! true // evaluates to false
! false // evaluates to true.

The logical operators && and || are used when evaluating two expressions to
obtain a single relational result. The operator && corresponds with Boolean
logical operation AND. This operation results true if both its two operands are
true, and false otherwise. The following panel shows the result of operator &&
evaluating the expression a && b:

&& OPERATOR

a b a && b

true true true

true false false

false true false

false false false

The operator || corresponds with Boolean logical operation OR. This operation
results true if either one of its two operands is true, thus being false only when
both operands are false themselves. Here are the possible results of a || b:

|| OPERATOR

a b a || b

true true true

true false true

false true true

false false false

For example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).
((5 == 5) || (3 > 6)) // evaluates to true (true || false).

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that
expression is true and a different one if the expression is evaluated as false. Its
format is:

condition ? result1 : result2

If condition is true the expression will return result1, if it is not it will return result2.

7==5 ? 4 : 3 // returns 3, since 7 is not equal to 5.
7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.
5>3 ? a : b // returns the value of a, since 5 is greater than 3.
a>b ? a : b // returns whichever is greater, a or b.

// conditional operator

#include <iostream>
using namespace std;

int main ()
{
 int a,b,c;

 a=2;
 b=7;
 c = (a>b) ? a : b;

 cout << c;

 return 0;
}

7

In this example a was 2 and b was 7, so the expression being evaluated (a>b)
was not true, thus the first value specified after the question mark was discarded
in favor of the second value (the one after the colon) which was b, with a value of
7.

Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are
included where only one expression is expected. When the set of expressions
has to be evaluated for a value, only the rightmost expression is considered.

For example, the following code:

a = (b=3, b+2);

Would first assign the value 3 to b, and then assign b+2 to variable a. So, at the
end, variable a would contain the value 5 while variable b would contain value 3.

Bitwise Operators (&, |, ^, ~, <<, >>)

Bitwise operators modify variables considering the bit patterns that represent the
values they store.

operator asm equivalent description

& AND Bitwise AND

| OR Bitwise Inclusive OR

^ XOR Bitwise Exclusive OR

~ NOT Unary complement (bit inversion)

<< SHL Shift Left

>> SHR Shift Right

6.7 Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another.
There are several ways to do this in C++. The simplest one, which has been
inherited from the C language, is to precede the expression to be converted by
the new type enclosed between parentheses (()):

int i;
float f = 3.14;
i = (int) f;

The previous code converts the float number 3.14 to an integer value (3), the
remainder is lost. Here, the typecasting operator was (int). Another way to do the
same thing in C++ is using the functional notation: preceding the expression to
be converted by the type and enclosing the expression between parentheses:

i = int (f);

Both ways of type casting are valid in C++.

6.8 sizeof()

This operator accepts one parameter, which can be either a type or a variable
itself and returns the size in bytes of that type or object:

a = sizeof (char);

This will assign the value 1 to a because char is a one-byte long type.
The value returned by sizeof is a constant, so it is always determined before
program execution.

Precedence of operators

When writing complex expressions with several operands, we may have some
doubts about which operand is evaluated first and which later. For example, in
this expression:

a = 5 + 7 % 2

we may doubt if it really means:

a = 5 + (7 % 2) // with a result of 6, or
a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is
an established order with the priority of each operator, and not only the arithmetic
ones (those whose preference come from mathematics) but for all the operators
which can appear in C++. From greatest to lowest priority, the priority order is as
follows:

Level Operator Description Grouping

1 :: scope Left-to-
right

2 () [] . -> ++ -- postfix Left-to-
right

++ -- ~ ! sizeof unary (prefix)

* & indirection and reference
(pointers)

3

+ - unary sign operator

Right-to-
left

4 (type) type casting Right-to-
left

6 * / % multiplicative Left-to-
right

7 + - additive Left-to-

right

9 < > <= >= relational Left-to-
right

10 == != equality Left-to-
right

11 & bitwise AND Left-to-
right

12 ^ bitwise XOR Left-to-
right

13 | bitwise OR Left-to-
right

14 && logical AND Left-to-
right

15 || logical OR Left-to-
right

16 ?: conditional Right-to-
left

17 = *= /= %= += -= >>= <<= &=
^= != assignment Right-to-

left

18 , comma Left-to-
right

Grouping defines the precedence order in which operators are evaluated in the
case that there are several operators of the same level in an expression.

All these precedence levels for operators can be manipulated or become more
legible by removing possible ambiguities using parentheses signs (and), as in
this example:

a = 5 + 7 % 2;

might be written either as:

a = 5 + (7 % 2);

or

a = (5 + 7) % 2;

depending on the operation that we want to perform.

So if you want to write complicated expressions and you are not completely sure
of the precedence levels, always include parentheses. It will also become a code
easier to read.

