L ecture-8
MANIPULATOR FUNCTIONS

Manipulator functions are specia stream functions that change certain
characteristics of the input and output. The main advantage of using
manipulator functions is that they facilitate the formatting of input and output
steams.

To use these functions , header file <iomanip.h> must be included in the
program. Followingis the list of some of the manipulator functions.

end! (this function has aready been studied.)
hex, dec, oct
setbase
Set
setfill
Setprecision
ends
ws
flush
setiosflags
resetiosflags.
We have already studied endl command, hich means end of line.
Below we give to programs to demonstrate hex, dec and oct functions.
These functions convert any number to hexadecimal, decima and octal

numbers.

Program: 8.1

/' lusi ng dec, hex, oct mani pul at or

#i ncl ude <i ostreant

#i ncl ude <i omani p>

usi ng namespace std,;

voi d mai n(voi d)

{
i nt val ue;
cout <<"Ent er nunber" <<endl
ci n>>val ue;
cout <<" Desi mal base="<<dec<<val ue<<end|
cout <<"Hexasi mal base="<<hex<<val ue<<endl
cout <<"(Octal base="<<oct <<val ue<<end|

}
OUTPUT OF THE PROGRAM

/ *Ent er nunber
10

Desi mal base=10

Hexasi mal base=a

Cctal base=12

Press any key to continue . . .*/

Same program can be ritten with setbase(n). Here n is the number to which

base is to be converted.
Prog: 8.2

/' lusing dec, hex, oct using setbase ()nmanipul at or

#i ncl ude <i ostreanp

#i ncl ude <i omani p>

usi ng namespace std

voi d mai n(voi d)

{
i nt val ue;
cout <<"Enter nunber"<<endl
ci n>>val ue;
cout <<"Desi nal base="<<set base(10) <<val ue<<endl|
cout <<"Hexasi mal base="<<set base(16) <<val ue<<endl
cout <<"Cctal base="<<setbase(8)<<val ue<<endl

}

Output is same as in example 8.1. Manipulator setw() sets the width of the output
field. Example 8.3 demonstrates the use of setw().

Program 8.3:

/1 Use set width

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
usi ng nanmespace std;
voi d mai n(voi d)

{
i nt a=200, b=300;
cout <<set W(5) <<a<<set W 5) <<b<<end|
cout <<set W(6) <<a<<set W 6) <<b<<end|
cout <<set W 7) <<a<<set W 7) <<b<<end|
cout <<set W 8) <<a<<set W(8) <<b<<end]
}
/*
200 300
200 300
200 300
200 300

Press any key to continue
*/
Use of setfill(**") : Function setfill fills the blank spaces in the output with a

simble given in the bracket of setfill. This is demonstrated in the following
example.

Program 8.4

/1l Use set width and setfill manipul ator

#i ncl ude <i ostreanp

#i ncl ude <i omani p>

usi ng namespace std,;

voi d mai n(voi d)

{
i nt a=200, b=300;
cout<<setfill('*");
cout <<set W(5) <<a<<set W(5) <<b<<end]|
cout <<set W(6) <<a<<set W 6) <<b<<end|
cout <<set W(7) <<a<<set W 7) <<b<<end|
cout <<set W 8) <<a<<set W 8) <<b<<end|

}

/*

200300

200300

****200****300

*****200*****300

Press any key to continue. . .

*/

Setprecision: Below we give an example of setprecision(), with the help of which we
can define number of decimal required in an output. .

Program 8.5

/'l Use setprecision mani pul at or
#i ncl ude <i ostreanp

#i ncl ude <i omani p>

usi ng nanmespace std;

voi d mai n(voi d)

{
float a=5,b=3;float c;
c=al b;
cout <<set preci si on(1) <<c<<endl
cout <<set preci si on(2) <<c<<endl
cout <<set preci si on(3) <<c<<endl
cout <<set preci si on(4) <<c<<endl
cout <<set pr eci si on(5) <<c<<endl|

}

/*

2

1.7

1. 667

1. 6667

1. 66667

Press any key to continue. . .

*/

Ends : The ends is a manipulator, which is used to attach a null terminating
character ('\0’) at the end of a string. The ends manipulator takes no argument
when ever it is invoked. This causes a null character to output. It encloses the
output by the character used in ‘\ ‘.

Let us see in program 8.6 how it works.

Program 8.6:

/'l Use of ends mani pul at or
#i ncl ude <i ostrean>

#i ncl ude <i omani p>

usi ng nanespace std;

voi d mai n(voi d)

{
i nt nunber =231;

cout <<'\ "' <<" nunber =" <<nunber <<ends;
cout <<'\ "' <<endl

}
/ *
"number=231" */

It is to be noted that hex, dec, oct, endland ends manipulators are
defined in iostream.h. Other manipulators are defined in iomanip.h.

Setiosflags and resetiosflags : Setiosflags manipulator function is used to
control different input and output settings. Following program demonstrates the
use of setiosflags.

Program 8.9:

/'l Use of setiosflags manipul at or
#i ncl ude <i ostreanp

#i ncl ude <i omani p>

usi ng nanespace std;

voi d mai n(voi d)

{

i nt val ue;

cout <<"Enter a nunber \n"<<endl;
ci n>>val ue;

cout <<seti osfl ags(i os:: showbase);
cout <<seti osfl ags(i os::dec);

cout <<"deci mal ="<<val ue<<endl ;
cout <<seti osfl ags(i os:: hex);

cout <<"Hexadeci mal =" <<val ue<<endl ;
cout <<setiosfl ags(i os::oct);

cout <<" Cct al =" <<val ue<<endl ;

}

/*

Enterr a nunber
10

deci mal =10
hexadeci mal =0Oxa
Cct al =012

*/
cin and strings

We can use cin to get strings with the extraction operator (>>) as we do with
fundamental data type variables:

cin >> mystring;

However, as it has been said, cin extraction stops reading as soon as it finds any
blank space character, so in this case we will be able to get just one word for
each extraction. This behavior may or may not be what we want; for example if
we want to get a sentence from the user, this extraction operation would not be
useful.

In order to get entire lines, we can use the function get!ine, which is the more
recommendable way to get user input with ci n:

/[l cin with strings What' s your nanme? Raj

#i ncl ude <i ostreanp Kamal

#i ncl ude <string> Hel l o Raj Kamal .

usi ng nanespace std; What is your favorite
tean? cof fee

int main () | like coffee too!

{

string nystr;

cout << "Wiat's your nanme? ";
getline (cin, mystr);

cout << "Hello " << nystr <<

"“.\n";

cout << "What is your favorite
drink? ";

getline (cin, nystr);

cout << "I like " << nystr << "
too!\ n";

return O;}

Notice how in both calls to getline we used the same string identifier (mystr).
What the program does in the second call is simply to replace the previous
content by the new one that is introduced.

stringstream

The standard header file <sstream> defines a class called stringstream that
allows a string-based object to be treated as a stream. This way we can perform
extraction or insertion operations from/to strings, which is especially useful to
convert strings to numerical values and vice versa. For example, extraction of an
integer from a string, we write the folloing program:

string mystr ("1204");
int myint;
stringstream(mystr) >> myint;

This declares a string object with a value of "1204", and an int object. Then we
use stringstream'’s constructor to construct an object of this type from the string
object. Because we can use stringstream objects as if they were streams, we can
extract an integer from it as we would have done on cin by applying the extractor
operator (>>) on it followed by a variable of type int.

After this piece of code, the variable myint will contain the numerical value 1204.

/[stringstreams Enter price: 22.25
#include <iostream> Enter quantity: 7
#include <string> Total price: 155.75

#include <sstream>
using namespace std;

int main ()

{
string mystr;
float price=0;
int quantity=0;

cout << "Enter price: ";

getline (cin,mystr);

stringstream(mystr) >> price;//why storing price in mystr?
cout << "Enter quantity: ";

getline (cin,mystr);

stringstream(mystr) >> quantity;

cout <<"Total price: " << price*quantity << endl;
returnO;

In this example, we acquire numeric values from the standard input indirectly.
Instead of extracting numeric values directly from the standard input, we get lines
from the standard input (cin) into a string object (mystr), and then we extract the
integer values from this string into a variable of type int (myint).

Using this method, instead of direct extractions of integer values, we have more
control over what happens with the input of numeric values from the user, since
we are separating the process of obtaining input from the user (we now simply
ask for lines) with the interpretation of that input. Therefore, | recommend you to
use this method instead of direct extraction in order to get numerical values from
the user in all programs that are intensive in user input.

