
 1

Lecture-9

JUMP STATEMENTS.

The break statement

Using break we can leave a loop even if the condition for its end is not fulfilled. It can be
used to end an infinite loop, or to force it to end before its natural end. For example, we
are going to stop the count down before its natural end (maybe because of an engine
check failure?):

// break loop example

#include <iostream>
using namespace std;

int main ()
{
 int n;
 for (n=10; n>0; n--)
 {
 cout << n << ", ";
 if (n==3)
 {
 cout << "countdown
aborted!";
 break;
 }
 }
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, countdown
aborted!

The continue statement

The continue statement causes the program to skip the rest of the loop in the current
iteration as if the end of the statement block had been reached, causing it to jump to the
start of the following iteration. For example, we are going to skip the number 5 in our
countdown:

// continue loop example
#include <iostream>
using namespace std;

int main ()
{
 for (int n=10; n>0; n--) {
 if (n==5) continue;
 cout << n << ", ";
 }
 cout << "FIRE!\n";
 return 0;

10, 9, 8, 7, 6, 4, 3, 2, 1, FIRE!

 2

}

The goto statement

goto allows to make an absolute jump to another point in the program. You should use
this feature with caution since its execution causes an unconditional jump ignoring any
type of nesting limitations.
The destination point is identified by a label, which is then used as an argument for the
goto statement. A label is made of a valid identifier followed by a colon (:).

Generally speaking, this instruction has no concrete uses in structured or object oriented
programming aside from those that low-level programming fans may find for it. For
example, here is our countdown loop using goto:

// goto loop example

#include <iostream>
using namespace std;

int main ()
{
 int n=10;
 loop:
 cout << n << ", ";
 n--;
 if (n>0) goto loop;
 cout << "FIRE!\n";
 return 0;
}

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, FIRE!

The exit function

exit is a function defined in the cstdlib library.

The purpose of exit is to terminate the current program with a specific exit code. Its
prototype is:

void exit (int exitcode);

The exitcode is used by some operating systems and may be used by calling programs.
By convention, an exit code of 0 means that the program finished normally and any other
value means that some error or unexpected results happened.

The selective structure: switch.

The syntax of the switch statement is a bit peculiar. Its objective is to check several
possible constant values for an expression. Something similar to what we did at the

 3

beginning of this section with the concatenation of several if and else if instructions.
Its form is the following:
switch (expression)
{
 case constant1:
 group of statements 1;
 break;
 case constant2:
 group of statements 2;
 break;
 .
 .
 .
 default:
 default group of statements
}

It works in the following way: switch evaluates expression and checks if it is equivalent
to constant1, if it is, it executes group of statements 1 until it finds the break
statement. When it finds this break statement the program jumps to the end of the
switch selective structure.

If expression was not equal to constant1 it will be checked against constant2. If it is
equal to this, it will execute group of statements 2 until a break keyword is found,
and then will jump to the end of the switch selective structure.

Finally, if the value of expression did not match any of the previously specified
constants (you can include as many case labels as values you want to check), the
program will execute the statements included after the default: label, if it exists (since
it is optional).

Both of the following code fragments have the same behavior:

switch example if-else equivalent
switch (x) {
 case 1:
 cout << "x is 1";
 break;
 case 2:
 cout << "x is 2";
 break;
 default:
 cout << "value of x unknown";
 }

if (x == 1) {
 cout << "x is 1";
 }
else if (x == 2) {
 cout << "x is 2";
 }
else {
 cout << "value of x unknown";
 }

The switch statement is a bit peculiar within the C++ language because it uses labels
instead of blocks. This forces us to put break statements after the group of statements
that we want to be executed for a specific condition. Otherwise the remainder statements
-including those corresponding to other labels- will also be executed until the end of the
switch selective block or a break statement is reached.

 4

For example, if we did not include a break statement after the first group for case one,
the program will not automatically jump to the end of the switch selective block and it
would continue executing the rest of statements until it reaches either a break instruction
or the end of the switch selective block. This makes unnecessary to include braces { }
surrounding the statements for each of the cases, and it can also be useful to execute the
same block of instructions for different possible values for the expression being
evaluated. For example:

switch (x) {
 case 1:
 case 2:
 case 3:
 cout << "x is 1, 2 or 3";
 break;
 default:
 cout << "x is not 1, 2 nor 3";
 }

Notice that switch can only be used to compare an expression against constants.
Therefore we cannot put variables as labels (for example case n: where n is a variable)
or ranges (case (1..3):) because they are not valid C++ constants.

If you need to check ranges or values that are not constants, use a concatenation of if and
else if statements
Program:9.1 Use of continue command
// Display even numbers 2,4,6,8,...

#include <iostream>
using namespace std;
void main()
{
 int num=0;
 while(num++<=100)
 {
 if (num%2!=0)
 continue;//contine statement skips the step
 cout<<'\t'<<num;
 }
}
/*2 4 6 8 10
12 14 11111116 18
........
*/

