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PHYS 3033 GENERAL RELATIVITY PART I 

Chapter 4 

Special relativistic dynamics 

 

4.1 Elementary Lagrangian and Hamiltonian Dynamics 

 

Let’s consider the Newton equation 

  

amF


  

 

in the one-dimensional case, in which all the physical parameters depend on the variable 

x only. Assume that the force is conservative, which means that it is given as the spatial 

derivative of the potential energy )(xU : 

  

.
dx

dU
F   

 

Thus for this case Newton’s equation can be re-written as 

  

dx

dU
xm  ,         (1) 

 

where  

 

v
dt

dx
x  

and  

 

.
2

2

a
dt

xd
x   

 

Define the Lagrangian  xxL , as a function of two variables, the position x and the 

speed x , 

  

       ,
2

1
, 2 xUxmxUxTxxL        (2) 

where the kinetic energy   2

2

1
xmxT   is a function of the speed variable only and the 

potential energy is a function of the position only. 

 From Eq. (2) one can easily see that 

  

,
dx

dU

x

L
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
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x

L
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





       (3) 
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Then obviously 

  

.xm
x

L

dt

d
















        (4) 

 

With the use of Eq. (3) Newton’s Eq. (1) becomes 

  

,
x

L

x

L

dt

d











   

 

which is called the Euler-Lagrange equation in one dimension 1 . 

To find the Hamiltonian formulation of dynamics, we define first the 

Hamiltonian  pxH , as a function of two new variables, the momentum p and the 

position x : 

  

   ,,, xxLxppxH     

 

which is just the total energy UT  as 

  

    .)(
2

1
,, 22 UTxUxmxmxxLxppxH 








     (5) 

  

The Hamilton equations, which replace Newton’s equation of motion Eq. (1) are 

given by 

  

.,
x

H
p

p

H
x









          (6) 

 

 

 

 

Hamilton is one of the most important scientists of the 19
th

 

century. As a child, he learned 14 languages and taught 

himself mathematics at age 17. Hamilton developed the 

mathematical theory of quaternions, which is an anti-

commutative algebra, with important applications to 

quantum mechanics. Perhaps Hamilton's most important 

contribution came from his reformulation of Newton's 

Laws. In the same way that Lagrange provided a new 

method for solving mechanical problems, Hamilton 

developed an alternative formalism. He showed that the 

results were equivalent in the three methods, but his proves 

to be most useful for a certain class of problems. Even 

today, Hamiltonian Mechanics is used to determine orbital 

trajectories of satellites. 

Sir William Rowan 

Hamilton (1805-1865) 
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4.2 The principle of least action 

 

In 1746 the French scientists Maupertuis formulated the Principle of Least 

Action, which is generally credited to one of the three great scientists, Euler, Lagrange, 

and Hamilton, who further developed it. This Principle is one of the greatest 

generalizations in all physical science, although not fully appreciated until the advent of 

quantum mechanics in the last century. Maupertuis arrived at this principle from a feeling 

that the very perfection of the universe demands a certain economy in nature and is 

opposed to any needless expenditure of energy. Natural motions must be such as 

to make some quantity a minimum.  

 

In 1732 Maupertuis introduced Newton’s theory of 

gravitation to France. He was a member of an expedition to 

Lapland in 1736, which set out to measure the length of a 

degree along the meridian. His measurements verified 

Newton’s predictions that the Earth would be an oblate 

spheroid. Maupertuis published on many topics, including 

mathematics, geography, astronomy and cosmology. In 

1744 he first enunciated the Principle of Least Action and 

he published it in Essai de cosmologie (Cosmological 

Essays) in 1750. He hoped that the principle might unify the 

laws of the universe.  

Maupertuis (1698-1759)   

 

The formal definition of the principle of least action is that it is "the principle 

stating that the actual motion of a conservative dynamical system 

between two points takes place in such a way that a function of the 

coordinates and velocities, called the action, has a minimum value with 

reference to all other paths between the points which correspond to the 

same energy." 2   

The action S of a system, which is a scalar quantity, is defined as the time 

integral of the Lagrangian function,   

 
2

1

.)(),(
t

t
dttxtxLS   

Therefore the problem of the motion of a mechanical system can be stated as that 

of finding the path ,),( 21 ttttx   such that the action S is minimal. From a 

mathematical point of view this class of problems belongs to the field of 

mathematics called variational calculus and a quantity defined like the action is 

named functional
2 . A functional will have its extremal value when its 
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"variation" is equal to zero.  (This is like a function having an extremal 

value when its derivative is equal to zero). 

Consider two points A  and B . There are many trajectories joining the points, 

but a mechanical system which is evolving between them is choosing the trajectory 

that makes the action functional extremal.   

 

Let’s assume that )(tx is the real trajectory of the body. Let’s us also imagine a 

second trajectory, which is very near to the first, given by )()( thtx  , where )(th  is an 

arbitrary 

 

time dependent function and   is a constant satisfying the condition 1 . Obviously at 

the ends of all varied paths )(th  satisfies the conditions 

     .021  thth        (7) 

The value of the action integral, which is a scalar, will be necessarily different 

according to the path taken by the particle to go from A  to B , 

    )()( thxStxS  .  

To find the curve or curves and the path or paths that make the action extremal, 

we shall use the variation of the trajectory and evaluate the action for the extremal and for 

the varied trajectory. For the Lagrangian along the varied path we obtain, by using a 

Taylor series expansion,  
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    

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L
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  ,, . 

Therefore the variation of the action along the two paths is given by 

      











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




2

1
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t
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x

L
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x

L
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
 . 

The second term in the integrand can be transformed by using partial integration, 
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
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since     .021  thth  

Then the variation of the action integral for a very small   is  

 
   

.)(
)()(

lim
2

10  

















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
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

t
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x
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x
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



 
 

Since 0)( th for 21 ttt  , for the path )(tx followed by the particle between 

the two fixed points A and B be an extremal of the action S , it is necessary and sufficient 

that the quantity between the brackets in the integral be zero. Then this condition gives 

the Lagrange equation: 

 .
x

L

x

L

dt

d











 

Therefore the equation of motion of a particle under the action of a 

conservative force can be derived from the Principle of the Least Action. 

 

 

 

The work of Lagrange, one of the most important scientists of 

the eighteenth century, covered many topics-astronomy, 

mathematics, mechanics etc. He applied the calculus of 

variations to mechanics. In a work on the foundations of 

dynamics, “Mécanique analytique” (Analytical Mechanics), 

published in 1788, Lagrange based his development on the 

principle of least action and on kinetic energy. The “Mécanique 

analytique” summarized all the work done in the field of 

mechanics since the time of Newton, and is notable for its use 

of the theory of differential equations.  

Lagrange (1736-1813)  
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4.3 The relativistic Lagrangian and Hamiltonian for a free particle 

 

To determine the action integral for a free relativistic particle (a particle not 

under the influence of any external force) we note that this integral must not depend 

on our choice of reference system, that is, it must be invariant under Lorentz 

transformations 3 . Then it follows that it must depend on a scalar. Furthermore, it is 

clear that the integrand must be a differential of the first order. But the only scalar of this 

kind that one can construct for a free particle is the interval ds or ds , where  is a 

constant. Therefore for a free relativistic particle the action must have the form 

  



b

a

dsS  ,        (8) 

where 
b

a

is an integral along the world line of the particle between two particular events 

of the arrival of the particle at the initial position and at the final position at definite times 

1t  and 2t . The action integral can also be represented as an integral with respect to the 

time,  

 

 
2

1

t

t

LdtS ,        (9) 

 

where L represents the Lagrange function of the system. By comparing Eqs. (8) and (9) it 

immediately follows 

  

2

2v
1

c
cL   .       (10) 

 

The quantity   characterizes the particle. In classical mechanics each particle is 

characterized by its mass 0m . Let us find the relation between   and 0m . It can be 

determined from the fact that in the limit c  the relativistic expression for L must go 

over into the classical expression 2/v2

0mL  . By expanding the Lagrangian (10) in 

powers series of cv/ we find 

 

 
c

c
c

cL
2

vv
1

2

2

2 
  . 

 

Constant terms in the Lagrangian do not affect the equation of motion and can be 

omitted. By comparing with the classical Lagrangian we obtain cm0 . Thus the action 

and the Lagrangian for a free relativistic material point are 
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 

b

a

dscmS 0 , 
2

2
2

0

v
1

c
cmL  . 

 

By the momentum of a particle we mean the vector  

 

 
v









L
p . 

 

By using the Lagrangian for the relativistic particle we find 

 

 

2

2

0

v
1

v

c

m
p 






 .                   (11) 

         

For small velocities this expression goes over into the classical relation v0


mp  . 

The Hamiltonian of the free particle can be found from 

 

 

2

2

2

0

2

2
2

0

2

2

2

0

v
-1

    
v

1
v

-1

v
-v

c

cm

c
cm

c

m
LpEH 








 .   (12) 

 

This very important formula shows that in relativistic mechanics the 

energy of a free particle does not go to zero for v=0, but rather takes on 

a finite value 2

0cmE  . 

The Hamiltonian is a function of the momentum and position. Hence we must express 

it as a function of .p


 With the use of  Eq. (11) and (12) we obtain 

 

 22

0

2 cmpcH 


. 

 

In the classical limit we obtain easily  

 

 ,
2

lim
0

2
2

0
m

p
cmH

c



 

 

which is the Hamiltonian of a free non-relativistic particle also containing the rest energy 

contribution. 

 The same results can be obtained by using the four-dimensional formalism. 

According to the principle of least action 
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   

,
2

000

00












b

a

i

i

b

a

i

i

b

a
i

i

i

i

i

i

b

a

i

i

b

a

xducm
ds

xddx
cm

dxdx

dxdxdxdx
cm

dxdxcmdscmS






 

where we have used the result that the operators d and  commute. Integrating by parts 

we obtain 

 

 ds
ds

du
xcmxcumxducmS

b

a

ii
b

a

i

i

b

a

i

i    000 .    (13) 

 

Since the variations of ix at the two limits corresponding to a and b are zero, 

    0 b

i

a

i xx  , we obtain the equation of motion of the relativistic particle in the 

form  

 

 0
ds

dui . 

 

To determine the general variation of the action as a function of the coordinates, 

one must consider the point a as fixed, so that   0a

ix . The second point is to be 

considered as variable, but only actual trajectories are admissible, i.e. only those which 

satisfy the equation of motion. Therefore the integral in the Eq. (13) is zero. In place of 

 bix  we may write simply ix . Thus we obtain 

 

 .0

i

i xcumS           (14) 

 

The four-vector  

 

 
ii

x

S
p




  

 

is called the momentum four-vector. From Eq. (14) we see that the components of the 

four-momentum of a free particle are 

 

 .,0 







 p

c

E
cump ii 

  ? 

 

Thus in relativistic mechanics momentum and energy are the components of a 

single four-vector. The square of the four-momentum satisfies the relation 

  

.22

0 cmpp i

i   
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4.4 The energy- momentum tensor 

 

Previously we have derived, by using the Lagrangian formalism and the principle of 

least action, an expression for the energy and momentum of a free particle. Now, having 

in mind later applications to the case of the gravitational field, we shall extend the 

derivation to a general form, without taking explicitly into account the nature of the 

system.  

      Hence we shall consider any system whose action integral is given in the general 

form 

 

   











 d

c
dVdt

x

q
qS

i

1
, , 

 

where   is some function of the quantities q , describing the state of the system and of 

their first derivatives with respect to the coordinates and time.  

The space integral dV  is the Lagrangian of the system, so that   is 

sometimes called Lagrangian density. The mathematical expression of the fact that the 

system is closed is the absence of any explicit dependence of  on the coordinates 
ix (this situation is similar to the situation of a closed system in mechanics, where the 

Lagrangian for a conservative system does not depend explicitly on time). 

First we shall derive the equations of motion of the system, by using the principle 

of least action. They are obtained by varying the action. In the following for brevity we 

shall denote 
ii

x

q
q




, , that is, a comma denotes the partial derivative with respect to the 

i -th component of the coordinate four-vector. 

The variation of the action is then given by 

 

 







































































 0

11

,,

,

,

d
qx

qq
qx

q
qc

dq
q

q
qc

S
i

i

i

ii

i

 . 

 

The second term in the integrand, after transformation by Gauss’ theorem, vanishes upon 

integration over all space. Therefore the equations of motion of the system (the Lagrange 

equations) are given by 

  

   0
,















qqx i

i
.       (15) 

 

Now let’s consider the derivative of the Lagrangian density with respect to the 

coordinates: 

 

 .
,

,

i

k

k

ii x

q

qx

q

qx 




















      (16)  
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Substituting 
q


 from the Lagrange equations (15) and noting that kiik qq ,,,,   we 

can transform (16) to the form 

  

 .
,

,

,

,,






























































k

iki

k

k

i

k

ki q
q

xx

q

qx

q

qxx
   (17) 

 

On the other hand we can write 

  

 ,
k

k

ii xx 







  

 

so that introducing the notation 

 

 ,
,

, 



 k

i

k

i

k

i
q

qT   

 

we can express Eq. (17) in the form 

 

 .0



k

k

i

x

T
        (18) 

 

An equation of the form 0/  kk xA is equivalent with the statement that the 

integral  k

k dSA of the vector over a hypersurface which contains all of three-

dimensional space is conserved. It is clear that an analogous result holds for the 

divergence of a tensor; therefore Eq. (18) asserts that the vector 

  

 k

iki dSTconstP   

 

is conserved. 

This vector must be identified with the four-vector of momentum of the system. 

We choose the constant factor in front of the integral so that, in accord with the usual 

definition of the momentum four-vector, the time component 0P  is equal to the energy of 

the system multiplied by c/1 . To do this we note that 

 

    ,
1

constconstconst 0000

0

0000 dVT
c

dVTdSTdSTP k

k  

 

if the integration is extended over the hyperplane .const0 x  This quantity must be 

considered the total energy of the system and therefore 00T  is the energy density of the 

system. Thus finally we obtain for the four-momentum of the system the expression 
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  .
1

k

iki dST
c

P        (19) 

 

The tensor ikT is called the energy-momentum tensor of the system. 

If we carry out the integration in Eq. (19) over the hyperplane const.0 x  we 

obtain 

  

 ,
1 0dVT
c

P ii  

 

where the integration extends over the whole three-dimensional space. The space 

components of iP form the three-dimensional momentum vector of the system, and 

the time component is its energy multiplied by c/1 . Thus the vector with components 

 

 ,
1

,
1

,
1 302010 T

c
T

c
T

c
 

 

may be called the momentum density. 00TW  is the energy density. 

To clarify the physical meaning of the remaining components of ikT , we separate 

the conservation equation (18) into space and time components: 

 

 0
1 000














x

T

t

T

c
, 0

1 0














x

T

t

T

c
.    (20) 

 

We integrate these equations over a volume V in space. From the first equation 

we obtain 

 

  
















dfTcdV
x

T
cdVT

t

0
0

00 , 

 

where the second integral has been transformed by means of the Gauss theorem(Converts 

surface integral n to line integral in 4-D space). The surface integral is taken over the 

surface surrounding the volume V and  zyx dfdfdf ,,  are the components of the three-

vector of the surface element fd


. The expression on the left is the rate of change of the 

energy contained in the volume V ; from this it is clear that the expression on the right is 

the amount of energy transferred across the boundary of the volume V , and the 

vector S


 with components  

 

 ,,, 030201 cTcTcT  

 

is its flux density-the amount of energy passing through unit surface in unit time.  
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There is a definite connection between the energy flux and the momentum density: 

the energy flux density is equal to the momentum density multiplied by 2c . 

From the second equation in (20) we find similarly 

 

 .
1 0

 















 dfTdV

x

T
dVT

tc
 

 

On the left we have the change of the momentum of the system in the volume 

V per unit time. Therefore  
dfT  is the momentum emerging from the volume 

V per unit time.  

Thus the components T of the energy momentum tensor constitute the 

three-dimensional tensor of momentum flux density: we denote it by   (a 

component of this tensor is the amount of the  -component of the momentum passing 

per unit time through unit surface perpendicular to the x axis).   is also called the 

stress tensor. 
The meanings of the individual components of the energy-momentum tensor are 

represented in the following table 

 





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
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
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
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
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
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yzyyyx
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c

S

c
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c

S

c

S

c
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c

S
W

T







-   -   -    

-   -   -    

-   -   -    

                

. 

 

4.5 The energy-momentum tensor for macroscopic bodies 
 

The flux of the momentum through the element fd


of the surface of a body is just the 

force acting on the surface element. Therefore   is the  -component of the force 

acting on the element. Now we introduce a reference system in which a given element 

of volume of the body is at rest. In such a reference system Pascal’s law is valid, that is 

the pressure p applied to a given portion of the body is transmitted equally in all 

directions and is everywhere perpendicular to the surface on which it acts.  
Therefore we can write  

 pdfdf  ,  

 

so that 

   p .  
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As for the components 0T , which represent the momentum density, they are 

equal to zero for the given volume element in the reference system we are using. The 

component 00T  is always the energy density of the body, which we denote by  ; 2/ c  is 

the mass density of the body, i.e. the mass per unit volume.  

Thus, in the reference system under consideration (in which the body is at rest) 

the energy momentum tensor has the form 

  























p

p

p
T ik

   0   0    0

0      0    0

0   0       0

0   0    0    

.        (21) 

 

Now it is easy to find the expression of the energy-momentum tensor in an 

arbitrary reference system. We introduce the four-velocity iu for the macroscopic motion 

of an element of volume of the body. In the rest frame of the particular element )0,1(iu . 

The expression of ikT must be chosen so that in this reference system it takes the form 

(21). It is easy to verify that this is 

 

  ikkiik pguupT   ,  

 

or, for the mixed components 

 

   .k

i

k

i

k

i puupT          (22) 

 

For a cloud of particles, the pressure, determined by the energy of the microscopic 

motion of the particle, is much smaller as compared with the rest energy of the cloud, 

p . In this case the energy-momentum tensor is given by 

 

   .k

i

k

i uuT   

 

Taking the trace of the above equation we obtain 

 

 .0  i

i

i

i uuT         (23) 

 

According to this formula we shall assume that for every system 

 

 0i

iT .         (24) 

 

Taking the trace of Eq. (22) we find 

 

   .034  ppppuupT i

i

i

i

i

i   
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Therefore the general property (24) of the energy-momentum tensor for an 

arbitrary system shows that the following inequality is always valid for the pressure and 

density of a macroscopic body: 

 

 .
3


p  

 

4.6 An elementary introduction of the energy-momentum tensor 

 

In the search for the relativistic theory of gravitation the energy density plays an 

important role. But it makes little sense to consider energy by itself, because what is 

energy density in one reference frame will be some combination of energy density, 

energy flux density and momentum flux density as seen from other reference frame. 

Hence all these quantities must be considered together.  
It will be best to explain this for a system consisting of a collection of non-interacting 

particles (a cloud of dust) 4 . Suppose that near some point in this cloud the density of 

particles is n per unit volume and their velocity is v


. In this case the energy density can 

be expressed in terms of the density and the velocity of the particles: 

  

2

2

2

000

v
1

c

cnm
T



 .       (25) 

 

This is simply the product of the number n of particles per unit volume by the 

energy per particle. We use the notation 00T  for energy density for reasons which will 

soon be obvious. 

The energy flux density can be defined in the following way: the energy flux in 

the x - direction is the amount of energy transported in unit time across a unit yz -

area, that is 

 

 

2

2

2

0

v
1

v

c

cnm x



 . 

 

This is the product of particle current xnv by the energy per particle. In 

general, the energy flux density in the k -direction is 

 

 

2

2

2

00

v
1

v

c

cnm
T

k

k



 .       (26) 

 
kk TT 00   can also be regarded as the density of the momentum. 
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Finally, let us define the momentum flux. The xy  momentum flux is defined as 

the amount of x -momentum that flows in the y -direction per unit area and unit 

time. Since the x -momentum per particle is 

 

 

2

2

0

v
1

v

c

m x



, 

 

the xy -momentum flux must obviously be 

 y
x n

c

m
v

v
1

v

2

2

0



. 

 

The general expression for the kl -momentum flux is 

 

 

2

2

0

v
1

vv

c

nm
T

lk

kl



 .       (27) 

 

It is now easy to show that the 16 components object 
ikT given by Eqs. (25), (26) 

and (27) is a tensor under Lorentz transformations. We can proceed as follows. ikT  

can also be written as 

 

 kiik uucmnT 2

00  , 

 

where we have introduced the quantity 0n  by means of the transformation 

 

 

2

2
0

v
1

c

n
n



 . 

 

The quantity 0n is the particle density as measured in a reference frame that 

moves with the particles. This is a consequence of the well-known volume contraction 

effect of special relativity: a volume containing a given number of particles and moving 

with them is contracted as measured in the laboratory frame; hence the laboratory density 

is increased. 

Because 0n , also called the proper particle density, is a number measured in the 

local rest frame, it is an invariant (a scalar). Hence kiik uucmnT 2

00  is the product of 

the scalar 0n by the tensor kiuucm 2

0 . Therefore ikT is also a tensor, the energy-

momentum tensor. Its definition can also be expressed as 
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 kiik uucT 2

0 , 

 

where 000 mn is the mass density as measured in the local rest frame of the particles; 

0  is also called the proper mass density. From its definition it is obvious that the 

energy-momentum tensor is symmetric: 

 
kiik TT  . 

 

The definition of ikT  can be summarized as follows: 

 

a) 00T  is the energy density 

 

b) icT 0 is the energy flow per unit area parallel to the i direction. In the case of the 

dust cloud this would constitute heat flow 

 

c) iiT is the flow of momentum component i per unit area in the i direction, i.e. the 

pressure across the i plane 

 

d) ijT  is the flow of the i  component of momentum per unit area in the j  direction. 

 

e) 0icT is the density of the i component of the momentum. 

 

The energy-momentum tensor embodies a compact description of energy and 

momentum density. 

Conservation laws for energy and momentum take particularly simple forms 

when expressed in terms of the energy-momentum tensor.  

The conservation of the energy offers a good example of the way that this 

happens. In the figure we can see a cube of edge length l  with its edges parallel to the 

axes Ox , Oy and Oz , respectively, in a medium whose energy-momentum tensor is  ikT .  

 

    
 

The rate of change of the energy content of the box is 
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t

T
l



 00
3 . 

 

This change is produced by the net energy inflow through the six faces of the 

cube. The energy flow through the faces at xx   and lxx  is, respectively 

 

 )(012 xcTl  inward per unit time 

 

 )(012 lxcTl  outward per unit time 

 

The net flow inward from these two faces is 

 

  
x

T
cllxTxTcl






01
301012 )()( . 

 

There are similar contributions from the other pairs of faces: 

 

 
y

T
cl






02
3  and 

z

T
cl






03
3 . 

 

Summing the three contributions gives the total inflow, and so we have 

 

 



























z

T

y

T

x

T
cl

t

T
l

030201
3

00
3 , 

 

which can be arranged to become 

 

 0
00

0

00















k

k

x

T

x

T

x

T




.       (28) 

 

The type of derivative appearing in Eq. (28) is known as the divergence of kT 0 . A 

similar procedure applied to the conservation of linear momentum yields the three 

equations  

 

 3,2,1,0 



i

x

T i





. 

 

Finally all the conservations laws can be combined into a single equation: 

 

 .0



k

k

i

x

T
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This means that the divergences of the energy-momentum tensor 

vanish everywhere. 
  

Notes 

 
1  Detailed presentations of the Lagrange and Hamilton formalisms in mechanics can be 

found in standard textbooks, like L.D. Landau and E. M. Lifshitz, Mechanics, Pergamon 

Press, Oxford, 1976 or H. Goldstein, Classical mechanics, Addison-Wesley Pub. Co., 

Reading, Ma, 1980. 
2 A complete presentation of the mathematical aspects of the variational calculus can be 

found in I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover Publications, 

Mineola, N. Y., 2000.  
3 For an extensive discussion of Lagrangian and Hamiltonian formalisms in relativistic 

mechanics and field theory, including applications to the electromagnetic field theory, see 

L. D. Landau and E. M. Lifshitz, The Classical theory of fields, Pergamon Press, Oxford, 

1975. 
4 The elementary introduction of the energy-momentum tensor is based on I. R. Kenyon, 

General Relativity, Oxford University Press, Oxford, 1990. 

  

  

  

 

 

 

 

 

 

 


