
 1 

PHYS 3033 GENERAL RELATIVITY PART II 

Chapter 6 

Riemannian geometry I 

 

“…geometry, you know, is the gate of science, and the gate 

is so low and small that one can only enter it as a little 

child....” 

       William Clifford (1845-1879) 

 

6.1 Vectors and tensors  
 

Since in studying the gravitational fields we are confronted with the necessity of 

considering phenomena in an arbitrary reference frame, it is necessary to develop 

four-dimensional geometry in arbitrary curvilinear coordinates 1 . 

Let us consider the transformation from one coordinate system  3210 ,,, xxxx  to 

another  3210 ',',',' xxxx , 

 

   3210 ',',',' xxxxfx ii  . 

 

Here if are certain general arbitrary functions satisfying some regularity 

conditions. 

The condition that the ix ’s are independent demands that the Jacobian of the 

transformation does not vanish, that is 
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  When we transform the coordinates, their differentials transform according to the 

relation 
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A set of four quantities  3,2,1,0iAi
, which under a general transformation 

of the coordinates transform like the coordinates differentials is called a 

contravariant four-vector: 
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Let   a scalar function. Under a coordinates transformation the four quantities 
ix /  transform according to the formula 
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which is different from formula (1).  

A set of four quantities  3,2,1,0iAi  which under a general coordinates 

transformation transform like the derivative of a scalar is called a covariant four-

vector: 
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Because two types of vectors appear in curvilinear coordinates, there are 

three types of tensors of second rank. We define a contravariant tensor of the 

second rank ikA  a set of sixteen quantities which transform like the products of the 

components of two contravariant vectors, i. e. according the law: 
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A covariant tensor of rank two transforms according to the expression 
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A mixed tensor transforms as 
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The definitions given here are the natural generalizations of the definitions of 

the four-vectors and four tensors in Galilean (Minkowskian) coordinates, according 

to which the differentials 
idx  form a contravariant four-vector and the derivatives 

ix /  form a covariant four-vector. The definitions given above can be generalized 

to define tensors of arbitrary order 2 . 

The rules for forming four-tensors by multiplication or contraction of products of 

other four-tensors remain the same in curvilinear coordinates as they were in Galilean 

coordinates. It is easy to see that the product of two four-vectors is a scalar, invariant 

with respect to the coordinate transformation: 
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where we have used the property of the partial derivatives of the coordinates given by 

m
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'
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The unit four-tensor k

i is defined again in the form 
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If kA is a four-vector, then multiplying by i

k  we obtain 

 

 ii

k

k AA  , 

 

that is another four-vector; this proves that k

i  is a tensor.  

The square of the line element (interval) in curvilinear coordinates is a 

quadratic form in the differentials :idx  

 

 ki

ik dxdxgds 2 , 

 

where the ikg  are functions of the coordinates: ikg  is symmetric in the indices i and k : 

 

 kiik gg  . 

 

Since the contracted product of ikg  and the contravariant tensor kidxdx  is a scalar, 

it follows that the ikg ’s form a covariant tensor; it is called the metric tensor. 

To tensors are said to be reciprocal to each other if 
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In particular the contravariant metric tensor is the tensor ikg reciprocal to the 

tensor ikg : 
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The same physical quantities can be represented in contra or covariant 

components. It is obvious that the only quantities that can determine the connection 

between the different forms are the components of the metric tensor. This connection 

is given by the formulae: 
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The transition between the different forms of a given physical tensor is 

accomplished by using the metric tensor according to the formulas: 

 

 lk

ili

k AgA  , lm

kmilik AggA   etc. 

 

In the previous lectures we have defined the completely antisymmetric unit 

pseudotensor iklme , with 10123 e and 10123 e . Let us transform this tensor to an 

arbitrary system of coordinates and denote it by iklmE . Let the ix' be Galilean and the ix  

be arbitrary curvilinear coordinates. According to the general rules for transformation of 

tensors we have 
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or 

  

 iklmiklm JeE  , 

 

where J is the Jacobian of the transformation. 

The Jacobian can be expressed in terms of the determinant of the metric tensor 

ikg  (in the system ix ). To do this we write the formula for the transformation of the 

metric tensor: 
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and equate the determinants of the two sides of this equation. The determinant of the 

reciprocal tensor is  

 

ggg ik

ik /1/1  .  

 

The determinant 1)0( lmg . Thus we have  
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Thus in curvilinear coordinates the antisymmetric unit tensor of rank four must be 

defined as 
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The indices of this tensor are lowered by using the formula 

 

 iklmmtlskrip

prst gegggge  , 

 

so that its covariant components are 

 

 

 iklmiklm egE  . 

 

In a Galilean coordinate system ix' the integral of a scalar with respect to 
3210 ''''' dxdxdxdxd  is also a scalar. On transforming to curvilinear coordinates ix , the 

element of integration goes over into 
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d
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Thus in curvilinear coordinates, when integrating over a four-volume the quantity  

 dg  behaves like an invariant. 

The element of area of the hypersurface spanned by three infinitesimal 

displacements is the contravariant antisymmetric tensor ikldS ; the vector dual to it is 

obtained by multiplying by the tensor iklmeg , so it is equal to 

 

gdSedSg klm

iklmi 
6

1
. 

 

Similarly, if ikdf  is the element of the two-dimensional surface spanned by two 

infinitesimal displacements, the dual tensor is defined as 

 

 lm

iklmik dfegdg 
2

1* . 

 

The rules for transforming the various integrals into one another remain the 

same. Of particular importance is the rule for transforming the integral over a 

hypersurface into an integral over a four-volume (Gauss theorem), which is accomplished 

by the substitution: 
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6.2 Covariant differentiation 

 

In Galilean coordinates the differentials idA of a vector form a vector and the 

derivatives k

i xA  /  of the components of a vector with respect to the coordinates 

form a tensor. 

 In curvilinear coordinates this is not so; idA  is not a vector and k

i xA  /  is not 

a tensor. This is due to the fact that idA is the difference of vectors located at different 

(infinitesimally separated) points of space; at different points in space vectors 

transform differently, since the coefficients in the transformation formulas are functions 

of the coordinates. 

It is easy to verify this directly. To do this we determine the transformation 

formulas for the differentials idA in curvilinear coordinates. A covariant vector is 

transformed according to the formula 
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Thus idA  does not transform at all like a vector (the same also applies to the 

differential of a contravariant vector).  

Only if the second derivatives 0
'2





li

k

xx

x
, i. e. if the kx' are  linear functions of 

the kx , do the transformation formulas have the form 
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that is idA transforms like a vector.  

We now undertake the definition of a tensor which in curvilinear coordinates 

plays the same role as k

i xA  /  in Galilean coordinates. In other words we must 

transform k

i xA  /  from Galilean to curvilinear coordinates.  

In curvilinear coordinates, in order to obtain a differential of a vector which 

behaves like a vector, it is necessary that the two vectors to be subtracted from each 

other be located at the same point in space.  

In other words we must somehow translate one of the vectors (which are 

separated infinitesimally from each other) to the point where the second is located, 

after which we determine the difference of the two vectors which now refer to one 

and the same point in space. 
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The operation of translation itself must be 

defined so that in Galilean coordinates the 

difference will coincide with the ordinary 

differential idA . Since idA  is just the 

difference of the components of two 

infinitesimally separated vectors, this means 

that when we use Galilean coordinates the 

components of a vector should not change as a 

result of the translation operation. But such a 

translation is precisely the translation of a 

vector parallel to itself. Under a parallel 

translation of a vector its components in 

Galilean coordinates do not change. 
 

 

 

If, on the other hand, we use curvilinear 

coordinates, then in general the components 

of a vector will change under such a 

translation. Therefore in curvilinear 

coordinates the difference in the 

components of two vectors after translating 

one of them to the point where the other is 

located will not coincide with their 

difference before the translation (i.e. with 

the differential idA ). 

 

Thus to compare two infinitesimally separated vectors we must subject one   

of them to a parallel translation to the point where the second is located.  

Let us consider an arbitrary contravariant vector; if its value at the point ix is iA , 

then at the neighboring point ii dxx   it is equal to ii dAA  .  

We subject the vector iA  to an infinitesimal parallel displacement to the point 
ii dxx  ; the change in the vector which results from this we note by iA . Then the 

difference iDA  between the two vectors which are now located at the same point is 

 

 iii AdADA  .       (1) 

 

The change 
iA  in the components of a vector under an infinitesimal parallel 

displacement depends on the values of the components themselves, where the 

dependence must clearly be linear. This follows directly from the fact that the sum of 

two vectors must transform according to the same law as each of the constituents. Thus 
iA  has the form 

 

 lki
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i dxAA  ,       (2) 
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where the i

kl  are certain functions of the coordinates. Their form depends, of course, on 

the coordinate system; for a Galilean coordinate system 0 i

kl .  

From this we see that the quantities i

kl  do not form a tensor, since a tensor 

which is equal to zero in one coordinate system is equal to zero in every other one. In 

a curvilinear space it is impossible to make all the i

kl  to vanish over all space.  

But the principle of equivalence requires that by a suitable choice of 

coordinate system we can eliminate the gravitational field over a given infinitesimal 

region of space, i.e. we can make the quantities i

kl  vanish in it.  

The quantities i

kl  are called connection coefficients or Christoffel symbols.  

 

 

Christoffel studied at the University of Berlin from 1850. In 1856 a 

doctorate was awarded to him for a dissertation on the motion of 

electricity in homogeneous bodies. He wrote important papers 

which contributed to the development of the tensor calculus. The 

Christoffel symbols, which he introduced, are fundamental in the 

study of tensor analysis. This allowed Ricci and Levi-Civita to 

develop a coordinate free differential calculus which Einstein, with 

the help of Grossmann, turned into the tensor analysis mathematical 

foundation of general relativity.  

E. B. Christoffel 

(1829-1900) 

 

   

In addition to the quantities i

kl  we shall also use the quantities kli,  defined as 

follows 
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klimkli g  , . 

 

Conversely,  

 

 klm
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kl g , . 

 

It is easy to relate the change in the components of a covariant vector under a 

parallel displacement to the Christoffel symbols. To do this we note that under a 

parallel displacement a scalar is unchanged. In particular, the scalar product of two 

vectors does not change under a parallel displacement. 

Let iA and iB be any covariant and contravariant vectors. Then from   0i

i BA  

we have 
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or 
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k

ik
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From this, in view of the arbitrariness of the iB we obtain 
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which determines the change in a covariant vector under a parallel displacement. 

Substituting (2) and   llii dxxAdA  /  in (1) we obtain 
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Similarly, for the covariant vector we find 
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The expressions in the parentheses are tensors, since when multiplied by the 

vector ldx  they give a vector.  

These tensors give the generalization of the concept of a derivative to 

curvilinear coordinates. They are called the covariant derivatives of the vectors 
iA and iA , respectively. We shall denote them by i

kA;  and kiA ; . Thus 
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while the covariant derivatives themselves are 
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In Galilean coordinates 0 i

kl  and covariant differentiation reduces to 

ordinary differentiation. 

One can similarly determine the covariant derivative of a tensor of arbitrary 

rank. In doing this one finds the following rule of covariant differentiation: 

 

-to obtain the covariant derivative of a tensor ...

...A  with respect to ix , we add to the 

ordinary derivative ixA  /...

...  for each covariant index i ( ...

. . iA ) a term ...

. . k

k

il A  and for 

each contravariant index i ( .  .

...

kA ) a term .  .

...

ki

kl A . 
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Exercise. Find the covariant derivative of the metric tensor ikg . 

One can easily verify that the covariant derivative of a product is found by the 

same rule as for ordinary differentiation in general. In doing this we must consider the 

covariant derivative of a scalar   as an ordinary derivative, that is, as the covariant 

vector k

k x / , in accordance with the fact that for a scalar 0 . Hence, the 

covariant derivative of a product ki BA is   

 

   lkiklilki BABABA ;;;
 . 

 

If in a covariant derivative we raise the index signifying the differentiation, 

we obtain the so-called contravariant derivative. Thus 
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The formulae for the transformation of the Christoffel symbols can be derived by 

comparing the two equations that determine the covariant derivatives and requiring that 

these laws be the same for both. A simple calculation gives: 
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Exercise. Find the law of transformation of the Christoffel symbols. 

From this formula we see that the i

kl transforms like a tensor only for linear 

coordinates (when the second term in the equation drops out). 

However, we note that this term is symmetric in k  and l , and therefore drops out 

for the transformation of i

lk

i

kl

i

klS  . This quantity therefore transforms like a tensor 
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i

klS  is called the torsion tensor of the space. 

We now show that in the gravitational theory based on the equivalence principle 

the torsion tensor must be zero. By virtue of the equivalence principle there must be a 

Galilean coordinate system in which the i

kl  and consequently also the i

klS vanish at a 

given point. Since i

klS  is a tensor, if it vanishes in one coordinate system it must 

vanish in all frames. This means that the Christoffel symbols must be symmetric in their 

lower indices: 

 

 i

lk

i

kl  , lkikli ,,  . 

 

There are generally 40 different quantities i

kl . 
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The transformation formula and the symmetry of the Christoffel symbols enables 

to prove the important result that it is always possible to choose a coordinate system in 

which all the i

kl  become zero at a previously assigned point (such a system is called 

locally inertial or locally geodesic). 

Let the given point be chosen as the origin of coordinates, and let the values of the 
i

kl  at it be initially (in the coordinates ix ) equal to  
0

i

kl . In the neighborhood of this 

point we make the transformation 
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1
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and according to the transformation law of the Christoffel symbols all the m

np

' become 

equal to zero. 

 For the transformation (4),   i

k

ki xx  0/' , so that it does not change the value 

of any tensor (including the metric tensor) at the given point, so that we can make the 

Christoffel symbols vanish at the same time as we bring the metric tensor to the Galilean 

form. 

 

6.3 The relation of the Christoffel symbols to the metric tensor 

 

Let us show now that the covariant derivative of the metric tensor ikg  is zero
3
. 

To do this we note that the relation  

 

 k

iki DAgDA   

 

is valid for the vector iDA  as for any other vector. On the other hand k

iki AgA  , so that  

 

   k
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k
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Since the vector kA  is arbitrary, it follows that ikDg  and therefore the covariant 

derivative satisfies the fundamental relation 

 

 0; likg . 

 

This equation can be used to express the Christoffel symbols in terms of the 

metric tensor ikg . To do this we write first 
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Thus the derivatives of the metric tensor are expressed in terms of the 

Christoffel symbols. By permuting the indices ki,  and l  we obtain 
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Taking half the sum of these equations we find 
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For the symbols i

kl  we have 4  
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The determinant g of the metric tensor ikg  and its differential play an 

important role in many calculations. The differential dg can be obtained by taking the 

differential of each component of the metric tensor ikg  and multiplying it by the 

corresponding minor ikA , 

 

 ik

ik dgAdg  . 

 

Therefore the minor of the element ikg  is given by 
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ik
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g

g
A




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On the other hand the components of the tensor ikg , reciprocal to ikg  are given 

by the minors of the determinant of the ikg  divided by the determinant 
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g

A
g
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ik  . 

 

Hence for the components of the tensor ikg , the reciprocal to the tensor ikg  

( l

i

kl

ik gg  ) we find the important relation 
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ik

g

g

g
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1
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Exercise. Find the inverse components of the metric tensor for a metric of the form 

       23
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00

2 dxgdxgdxgdxgds   .  

 

Exercise. Find the inverse components of the metric tensor for a metric of the form 

        10
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For the differential of the determinant of the metric tensor we have 

 

 ik

ikik

ik dgggdgggdg  . 

 

To obtain the second expression we have used the equality 4 i

i

ik

ik gg  , 

leading to ik

ik

ik

ik dgggdg   . 

 

Exercise. Show that the contracted Christoffel symbol i

ik  is given by 

g
xx

g

g kk

i

ik 








 ln

2

1
. 

With the aid of the formulas which we have obtained above we can transform the 

expression for i

iA; , the generalized divergence of a vector in curvilinear coordinates in a 

convenient form. We have 

 

 g
x

A
x

A
g

x
A

x

A
A

x

A
A

i

i

i

i

l

l

i

i
ll

lii

i
i

i 























 lnln; , 

 

or, finally, 

 

 
 

i

i

i

i
x

Ag

g
A








1
; . 

 

Exercise. Show that the divergence of an antisymmetric tensor ikA  is given by 

 
k

ik

ik

k
x

Ag

g
A








1
; . 
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Suppose that ikA  is a symmetric tensor; we want to calculate the expression k

kiA ;  

for its mixed components. We have 

 

 
 

k

l

l

kik

k

ik

l

l

ik

l

i

k

lkk

k

ik

ki A
x

Ag

g
AA

x

A
A 













1
; . 

 

The last term equals 

 

 kl

l

ik

i

kl

k

il A
x

g

x

g

x

g
























2

1
. 

 

Because of the symmetry of the tensor klA , two of the terms in parentheses cancel 

each other, leaving 

 

 
 

kl

i

kl

k

k

ik

ki A
x

g

x

Ag

g
A













2

11
; . 

 

Finally, we mention that Gauss’s theorem, for the transformation of the integral of 

a vector over a hypersurface into an integral over a four-volume can be written as 

 

   dgAdSgA i

ii

i

; . 

 

Notes 

 
1 There are many books devoted to an in depth presentation of the differential geometry. 

The physicist’s approach is developed in S. Weinberg, Gravitation and cosmology: 

principles and applications of the general theory of relativity New York, Wiley, 1972; L. 

D. Landau and E. M. Lifshitz, The Classical theory of fields, Oxford, Pergamon Press, 

1971 and H. C. Ohanian, Gravitation and spacetime, W.W. Norton and Comp., New 

York, 1976. The mathematician’s approach to differential geometry can be found in S. 

Hassani, Mathematical physics: a modern introduction to its foundations, New York, 

Springer, 1999, C. J. Isham, Modern differential geometry for physicists, World 

Scientific, Singapore, New Jersey, London, Hong Kong, 1999 or M. Nakahara, Geometry, 

topology and physics, Bristol, England, A. Hilger, 1990. 
2 The general definition of vectors and tensors follows L. D. Landau and E. M. Lifshitz, 

The Classical theory of fields, Oxford, Pergamon Press, 1971. 
3 The proof of the constancy of the metric tensor components under covariant 

differentiation follows the proof given in L. D. Landau and E. M. Lifshitz, The Classical 

theory of fields, Oxford, Pergamon Press, 1971. 
4 The Christoffel symbols are introduced in a different way in S. Weinberg, Gravitation 

and cosmology: principles and applications of the general theory of relativity New York, 

Wiley, 1972, by considering the free-fall motion in arbitrary coordinate systems. 
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