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An approximate solution of two-dimensional convex piston
problem

S. K. Singh and V. P. Singh

Abstract. A new theory of shock dynamics (NTSD) has been used to study the propagation of
curved shocks originating from the motion of two-dimensional convex piston of various shapes
The results have been compared with those obtained by Whitham's classical shock dynamics and
by TVD version of MacCormack's finite difference schome.

Keywords. Shock dynamics, non-lincar shock ray theory, curved shock preparation.

1. Introduction

The idea of deriving an infinite system of compatibility conditions along shock
rays has been used rocently (Grinfel'd (1], Maslov (2], Prasad [3]). By truncating
the infinite system of compatibility conditions, & new theory of shock dynamics
(NTSD) has been proposed (Ravindran and Prasad [4]), which enables one to
compute the amplitude and position of the shock and also to determine the flow
behind the shock upto a short distance. The NTSD has been used to solve the
one-dimensional accelerating or decelerating piston problem (Lazarev, Prasad and
Singh [5]). It was shown that the results agree well with those obtained by Harten's
TVD finite difference scheme (FDM) and it consumes less than 1 % of the com-
putational time taken by the FDM. It has also been shown that the NTSD with
at least two compatibility conditions gives a good approximate result in the case
which is equivalent to the condition that the derivative of pressure in a direction
normal to the shock front is positive (Ravindran, Sundar and Prasad [12]).

The derivation of compatibility conditions on a curved shock for gas dynamic
equations is quite challenging. Srinivasan and Prasad [6] used Maslov's method to
derive the first compatibility condition for the gas dynamic equations and Ravin-
dran and Prasad [7] later worked out the correct form of second compatibility
condition, Lazarev, Ravindran and Prasad [8] later derived the explicit forms of
the first three compatibility conditions for gas dynamic equations using Grinfel'ds
method. 01

The chief merit of the NTSD is that it takes into account the effects of the flow
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behind the shock to a reasonable extent. This is quite significant for the cases
when the flow behind the shock is non-uniform, and the classical shock dynamics
of Whitham [13, 14, 15] (which ignores these effects) becomes inapplicable. Similar
theories have also been given by Best [16, 17] (whose zeroth order truncation leads
to the Whitham's theory); and Anile and Russo (18, 18], who derived compatibil-
ity conditions for a general quasi- linear system of hyperbolic partial differential
equations and though their theory is very important from the theoretical point of
view, it is extromeoly cumbersome to derive even the second compatibility condition
using it.

In this paper, the NTSD with the first two compatibility conditions has been
used for the determination of the shape, position and strength of a shock originat-
ing from the motion of a convex body. The purpose here is to test the validity of
NTSD for the case when the initial shock shape is curved as well as the distribution
of the strength along the shock is non- uniform.

The geometrical and kinematical compatibility conditions, ray coordinate sys-
tem and the first and second dynamic compatibility conditions for the gas dynamic
equations have been described in details in (3], only a summary of the essential
yesults is reproduced here. Also, o winor algebraic error in the second compat-
ibility condition appearing in ref 3 has been corrected. The results obtained by
NTSD have been compared with the numerical solution of the full gas-dynamic
equations by flux limited TVD version of MacCormack's finite difference scheme
(FDM), and also with the classical shock dynamics due to Whitham.

2. Dynamic compatibility conditions for two-dimensional prob-
lems

We consider the propagation of ashock front fl in & polytropic gas with 7 as the
constant, ratio of specific heats. Let n = (ny, ng) be the umit vector normal to ;.
We assume that the velocity components u, v, the pressure p and the density p
are € (R%) except for a discontinuity of the first kind on {1, . We assume further
that the shock front propagates in a gas in @ uniform state and at rest. We denote
the quantities ahead of the shock by the suffix "+’ and those behind the shock by
suffix ™', and define the jump in a quantity G as: [G] =G+ - G-

The equations for two-dimensional motion of a gas are written in the form:
-

M+ () (2’) + plug +vy) =0 (2.1)
¥

() )@= oo

p+ (u,v) (z: ) +aplus +1vy) =0 (2.3)
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Taking jump of the equations of motion (2. 1)- (2. 3) across {1, we get:

Do Dl P+ = DO

Hy | +P| Hy | =& 0 (24)
So/, 5 ¥{p+ — So)

Dy = [p], Hy = [nyu+nyul, So = [p],

Dy = (ny, mo)[pe], [pe)) 7 81 = (ny,na)([pe], Ipy))T Hy = (ny,n2)(ug, o))"

with uy = (ng,n2)(lue], [uy])” and vy = (mym2)([ve); [vy])7; the superscript T
denotes the transpose of a column vector and the subscripts = and y denote the
derivatives with respect to the corresponding coordinate variables; x is the curva-
ture of the surface {1, ; € is the shock velocity and

il (-(C+Ho) (p+ — Do) 0 )

where

0 —(C+Hy) (p+—Do)! (2.5)

0 7(p+ —So) —(C+ Hp)

To obtain the second compatibility conditions, we differentiate each of the
equations (2. 1)-(2. 3) with respect to z and y respectively, take jump across £}
and finally take the scalar product with the unit normal vector n = (ny, n2). After
using this procedure on the two components of the momentum equation, we once
again take the inner product with the unit normal vector to obtain the normal
component of the second compatibility condition from the momentum equation.
The results can be written compactly in the vector form as:

Dy Dy
Hy | +P| H | =1 (2.6)
S/, Sz

where

oa=ouma) () G)) () o= enm (21 £21) (52):

Hy = (ny,n2) (:::) '

v =) (fie] fo) (7)o = (] i) ()
g~ ' Dog(ho — 97'C¢) + Dy (w, = x}fo) + M

fi = | 97" Hoe(ho — g7 C¢) + Hf = D1 Silps — Do) — g7 'hoC¢ |,
9 'Soc(ho—97'C) + 5 ((‘v +1)H; - 'ﬂtHo) + a2 M,
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h
My = (s = Do) 20+ ity 2% (27)

The suffix £ denotes differentiation with respect to the ray coordinate £ , and
ho = g~(C + Ho) ™ (Soelp+ — Do)~ — HaCe).

3. First and second set of equations in shock ray theory

We collect here the equations required for the calculation of successive positions
of a two-dimensional shock front and distribution of the shock strength (see ref [3]
for details). The shock position is given by:

 =mC,y = mC (3.1)

Let © be the angle made by the normal to the shock front 2, with the z-direction,
then ny = cos O, ny = sin@. The evolution of © is given by:

P8 (3:2)

The curvature s of the shock front is relsted to © by the following relation:

K= -—ﬁ (3.3)

s

The metric g defined for the curve 1, (which in general is the metric tensor defined
over the shock surface and it reduces to a scalar g in the present case, see ref [§])
evolves as:

g = —xCy - (3.4)

The set of five equations(3. 1)-(3. 4) for x,y, O, & and g is not closed, since the
shock velocity depends upon the shock strength Dg. The evolution of Dy and the
other two quantities Hy and Sp is given by the equation (2. 5) . The set of six
equations (3. 1)-(3. 4) and (2. 5), is again not complete due to presence of the
quantities Dy, Hy, Sy in the eqn (2. 5). The evolution of these quantities is given
by the equation (2. 7). In a similar way, further compatibility conditions can bee
derived.

The shock ray theory consists of solving the infinite system of compatibility
conditions along with the above system of five equations (3. 1)-(3. 4).
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4. Reduction of vector compatibility conditions into scalar com-
patibility conditions and the new theory of shock dynamics

For computational convenience, it is easier to work with scalar form of compati-
bility conditions. The system of vector compatibility conditions can be reduced to
that of scalar compatibility conditions by left multiplication of a suitably chosen
cigenvector of the matrix P (seo ref [5] for details). The eigenvalues of the matrix
P are:

Al =—(C+ ”0)31\2.3 =—(C + Hy) £a- (4.1)

The left eigenvector corresponding to the eigenvalue Ag, viz. L = (0, é(p_. -
Dy). %a:') is chosen for left multiplication, and we introduce the following nota-

tions:
= = Dy,
1 S
v =LUx = 3(p+ — Do)Hn + ﬁ (4.2)
where
Dy
Un=|Hy | N=12...
Sn
Now, left-multiplying the equation (2. 5) with L. we got
w0 = —mAgmy — %IRH_CRQ% (4.3)
whore
_ (1 s b\~ Cpyldps + (7 — 3)m)
m=(3lor—mha+ ) " a= Aps — m0)2(2ps + (v = 1)mg)’

b= dypyps
(2p4 + (v = 1)mg)*?

To express Dy, Hy, Sy in terms of mp and 7y, we multiply equ (2. 5) by P~ to get

Dy ) 1 1 ! O,
Uy=| H | =p7! {——‘Cwo 0 |+ [a (m,\gm - -mCu_wu—) }
S| 9 at b 2 g

(44)

which gives

Dy = dygmoO¢ + diymy, Hy = hyomoO¢ + hyymy, S) = s10me0¢ +symy (4.5)
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where

cl1 ma._ (p+ — 7p) tma -
dig=—4{ —(- - e —a® i
10 g{Al( 1+ 3 ) ks ama. + f\x-\'zt\n( a* + 3 )

i, o il ¥
““""{A: #4 ‘°’h“ms}

- C [ama_Ay _ 1 2 hna.} -E.( » b )
Mo gam{ T Y e L e L e T A

ama.

o= = (r(pe-50) 5 (e + 7)) o = (—te—sui+a)

Repeating the same procedure of scalarisation with the second vector compat-
ibility condition (viz. eqn (2. 7), we get after considerable simplifications:

Ty = ayge + agu%‘ “+ oawgez + a.nr'f' + agmym Of

+umr092 + aymoge + gy O¢ + anmogde — A2m2 (1.6)

where
hg

b
ay = 5;{(0 - w)(ps+ — 7o) + a_:}'

1 [ 3 w(b — Crow
ag = —2—93{J(p4_-f°)+-°—-— LUF:CTO)(A_" ( c:ﬂ‘*))}’

1C )
(p+ —mp) glp+— =)

1 d
a3 = 3(p+ —=0) (hfo - —'—°i“'—;) - ,i‘-‘l ((7 +1)hyo+

m
+§(hxo —esy0)Ca_,

1 d + 1 1
04=§(l’+-ffo)("¥1- 11711 )+(7 )!nhu+-2-mh(hu-un).

(p+ —m0)* 20—
_ (dyosy + dlmo)) (r+1)
a5 = 5P+ ffo)(?-’nohn =y —m) +5a shu

Ca_
) + %(.\g(hxo —esyp) + ‘2%_("” —esn)),

511 5C
2 (60 4 WY hag b e
= (h + D o )

2a_

1 (C I =
ag = Za- (? - (4= 7'0)-:;—0').07 = —%(b = Cmw),

__n..hn 2 ="-—[P+""ﬂ'0) _
o =——5 (p+ —w0), 00 29+ 9°C (b = Cmow),
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and
w90 ___ (ytMaipy
Oy C(2p4 + (v — )mg)?’

- L 7430 1),

~ 20_(p+ —m) \aZaZ(ps —m0)?

203 o4
3
(204 + (v — )mo)

We note that all the coefficients are functions of =g only. The pew theory
of shock dynamics (NTSD) using the compatibility conditions upto the second is
obtained by setting 3 = 0 in the equation (4. 6). The equations (4. 3) and (4.
B) (with =2 = 0), form a closed system of equation for the shock strength =y and
| a quantity 7 (which is a linear combimstion of jumps in the first derivatives of
| flow variables). To calculate the successive positions of a two-dimensional shock
front and distribution of shock strength =y, the equations (4. 3) and (4. 6) (with
=2 = 0) have to be solved together with the equations (3. 1)-(3. 4).
A finite difference schemne using forward difference in ¢ and central difference
in § is suggested 1o solve the above system of the partial differential equations:

A= (4(7- Vps + (2 - l)m)A +Cu, A=

—’:MA: 2 cosep, Y20 +:M' Z = cpsine),
ertl-ep * o) (C.'u" C:.;)' 9 =0 _ (e?ﬂ =6 )
Al 2Af At IAE
il -mp (et + gen.com, () (22,
i T (st yirog (%{”M)“

O, —@n 2 o, —on
+a (e (SRE2EL) o (i + o, (S L)

24§
. 2 I
+nas’l'84 (——e“;AEe?_’ ) “+ a’f'-' (ﬂ)‘gl ‘2;?2‘ - "'31-1 )

@n _en P T noo__ "
n_n i+1 i—1 n [ T0i4d Di-1 D541 — 91—y
+ag, (_2A{ ) +ﬁg;( A€ ) ( A€ ) (4.7)
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Figure 1.

Location and shape of a weak shock dee & the motion of a cirenlar cylinder moving with a
velocity 0.10 at times 0.50 and 1,00 respestively. 7777 - blunt body; - shock front by
NTSD; - - — : shock front by Whitman's theseys - © shock front by FDM.

5. Solution of convex piston problem

The NTSD is now used to find the flow produced by a curved piston of elliptical
shape with an arbitrarily assigned value of the eccentricity. We consider the flow
produced by the curved piston which suddenly starts moving with a non-zero
velocity into a gas at rest on its right side. Physically what happens under such
conditions is that a shock is formed at the surface of the piston and moves outward.
With increasing time, the shock asymptotically reaches its steady state position
(see Hays and Probstein [11], p 445 ).
The flow variables are non-dimensionalised as follows:

L.
=Ly =Ljt=—hu=asdyv =0.8,C=a:C p=pspp="0+P (5.1)

where the overhead bar denotes the non-dimensional variable, L is a characteristic
length which is chosen to be semi-major axis of the elliptic cross section.

We assume that the flow variables at a point P (£, §) behind the shock and in a
small neighbourhood of £ = 0, can be expanded in a Taylor's serics and let (Zo, 7o)
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Figure 2

Location and shape of & shock front due to the motion of an clliptic cylinder with eccentricity
0.25 and moving with & welocity 0,50 at times 0.50 and 1.00 respectively, 7777 - blunt body;
— : shock feomt by NTSI); - - - : shock front by Whitmaun's theory; - : shock front by FDM.

(where 3y = F9(€). 50 = H0(€) ) be the position of the point P on the piston at
t=0:
A= m+pu(E —20) + pr2(§ = o) + praf + oo,
B=p +puri(® = Fo) + pr2(§ — do) + P13t + e
6=+ uy (F—Fg) + up(i— fo) +ual + s
£ =u+ v (% — ) +via(if — o) + viaf + e (5.2)

where gy, gy, ug, oy are the limiting values of the flow variables g, p, @ and @ at the
point (29, §o) &= we approach the shock front from the left at £ = 0.

The piston is assumed to move in x-dircction only. Then its path can be
expanded in the following Taylor's series in

X6, 0) = F0(6) + Xy T+ Xppf? + oo, Yo (6,8) = 0(6) (5.3)

Let (X,Y) be the co-ordinates of a point on the shock front, which can be expanded
in the following form:

X(&,8) = 20(€) + ST(E)E+ SF (&) + ..., Y(E, D) = (&) + ST(E)T + S§ (&) «;5..‘.‘.).



Val. 50 (1999) An approximate solution of twe-dimensional convex piston problem 215

275

2.50+
2254

2.004

1.754

1.25

1,004
(.75
0.504

\
0.25- \

-
e e e —

00

e L

'
|
75 200 235 250 275

00 02% 058 835 100 135 1.50 |

Figure 3.

Location and shock front dee @0 the meses of an elliptic cylindor with occontricity 0.50 and
moving with a velocity 0.75 &t thess 538 and 1,00 respectively, 7777 : blunt body;
shock front by NTSD; — - — ¢ shock Sess by Whitman's theary; - - shock front by FIM.

The components of the piston yslacity and the shock velocity (at a chosen point
on the shock front) are obtained by dierentiating the equations (5. 3) and (5. 4)
respectively with respect to £ Simee the shock begins from the curved piston, we
assume the shock to be coincident with the piston at F = 0. The shock speed C(f)
at any time f is given by:

C=Cot %cssps:s;)r s (5.5)

172
where Co = ((S7)* + (S})?) " i thie sheock speed at F = 0.

At the shock front, the - Hugoniot conditions for the curved shocks
are given as (Courant and Friedrichs 9], p 299):

p-(N_ =C)=—p;C
pP-N_(N_—C)+p-=p4

30-(N_ = C)a? + p_(N-~Cle— + N_p_ = -‘-’;;%’;*-
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Figure 4.
Location and shape of a shock frunt das to the setion o & SEEs = moving with a
velocity (.73 at times 0.50 and 1 00 respectively. T77T | Blant body; ——— : shock front by
NTSD: - - - : shock front by Whitman'y Sheany: < = sl wF {Comparnsan of Fig. 3
and 4 shows the effoct of scosstriciay o | =
and the constancy of the

2 (5.6)
where N is the normal velocity component= ucos® + vsin ©, L is the tangential
velocity component=—usin 8 +vos 8, = u* ++* and ¢ is the internal energy=

p/(y—1)p.
To obtain the initial conditions for the system of equations (4. 7), we require

the coefficients in the Taylor's expansions (5. 2). For this purpose, we differentiate
the relations (3. 2) with respect to £.2 and § and substitute into the equations
of mation (2. 1)-{2. 3). Equating the coefficients of various powers of £, % and
7, we get a system of linear equations for the coefficients p11, P12, /13 ete. The
coordinates (X,Y) of a chosen paint on the shock front (as given by the eqn (5.
4)) are substituted into the Taylor expansions (5. 2), and finally we substitute
these into the Rankine-Hugoniot conditions (5. 6) and equate the coefficients of
various powers of f to obtain an additional system of linear equations.

The quantity C is determined by the shock velocity at £ = 0 at a chosen point
on the shock front when the curved piston begins to move with a non-zero velocity
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Figure 5,
Variation of shock strength along shock fooes for the case shown in Fig. 1

Xp,:
_ Xy cos8 X,? cos? @) 1/

Co--—lm_ +(l+ —‘—“_“ )2) (5.7)
where © is the angle made by the normal to the shock front with the x-axis at an
arbitrarily chosen point on the shock frost 2t 7 — 0 and p? = (y = 1)/(v +1).

At the piston, the following boundsss condition, namely, the fluid velocity
at the piston equals the velocity of the piston, must be satisfied. Using this
boundary condition, we get additional equations which enable us to determine all

the unknowns in the equations (5. 2) and (5. 4) uniquely in terms of X
Finally, the initial conditions for 7y and 7; are obtained as:

_ Xy o088

o = X,, ca8=C; (5.8)

m o= d—:-l' (PN +Mno=‘o) (6.9)

where py = (py; €08 O + p128in ©), (where 8 can be expressed in terms of §), and
%q is the ctirvature of the shock front at 7 = 0.
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Shock Velocity y

Figure 6.
Variation of shock strongth along shock front for the case shown in Fig. 2

The system of finite difference equations (4. 7) can be solved now using the
iuitial conditions as given above. A theoretical stability analysis for this finite
difference scheme is not available at present. However, Prasad [10] has shown that
NTSD equations are hyperbolic in (£, ¢) plane in the case of weak shocks. We have
carried out extensive numerical experiments to abtain a practically stable value of
At/AE.

For illustration we have considered two-dimensional cylindrical blunt bodies of
clliptic cross-sections with varying eccentricities.

6. Results and discussions

For numerical computations we take v = 1.4. The shapes and the locations of
the shock front have been computed by using the finite difference scheme (4. 7)
for NTSD. The corresponding problems were also solved using Whitham's shock
dynamics and also by using the flux-limited TVD version of MacCormack's schemme
(FDM) (see Fletcher 20}, Sweby [21] for details ). Only the upper half of the shock
profiles has been plotted due to symmetry about the x-axis,

In the fig. 1, the location and shape of a weak shock front, originating due to the



Vol. 50 (1999) An approximate solution of two-dimensional convex piston problem 214

1.50

1,454
/

Shock Velocity y

Figure 7.
Variation of shock strength alosg shock Soat Jor the case shown In Fig. 3

motion of a circular cylinder with & welocity .\’,,] = (.10 is shown at times I = 0.50
and 1.0 respectively. We see that in this case, the locations and shapes of the
shock front obtained by NTSD asd Whitham's theory are almost the same. The
results obtained by FDM also show wery good agreement with thoss from NTSD,
except for a fow points near the v-sxis. The variations of the shock strongth along,
the shock front is shown in fig 5. The shock strengths in this case of a weak shock
vary over a narrow range about the sonic limit.

The results for an elliptic body with eccentricity 0. 25, moving with a velocity
(0. 50 is shown in the figures 2 and & We see in this case that whereas the NTSD
and FDM predict almost the same locations for the shock front, the locations given
by Whitham's theory are slightly abead of those given by NTSD. An explanation
of this behaviour is given by figure 6, where we see that the shock velocities given
by the Whitham's theory at the points near the x-axis is appreciably higher than
those by NTSD or FDM. The shock strengths predicted by NTSD and FDM are
much closer, however they do not appear to follow any fixed pattern.

The results for an elliptic body with a velocity 0. 75 and eccentricity 0. 50 are
shown in figures 3 and 7. The curves for the shock locations and shock strengths
follow the same pattern as in the above case. We observe that the deviation in the
shock strengths given by NTSD and Whitham's theory becomes appreciably large
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in this case. This deviation increases with an increase in the eccentricity, this fact
becomes evident on comparing the figures 3 and 4, in which the shock shapes and
locations for the elliptical body has been compared with those for a circular body
moving with the same velocity.

We may conclude that the results obtained by NTSD are more accurate than
those predicted by Whitham’s elassical theory, since it is capable of taking into
account the cffects of non-uniformities in the flow caused by continuous changes
in the shape and strength of the shock front due to initial curvature of the convex
shock front. This fact is also supported by the closeness of the results obtained
by NTSD and those by FDM, which happens to be the only reliable approach
at present to tackle such problems. It is also noted that NTSD consumes only
nearly 3 % of the computational time taken by the FDM for the problem under
consideration. This drastic reduction in the computational time occurs due to
reduction in the number of independent variables, viz. from the (=, %.£) space (as
in FDM) to (€, 1) space (as in NTSD).
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