REVIEW PAPER ## Estimation of Target Damage due to Submunition-Type Missile Warheads using Simulation Model/Technique V.P. Singh, T. Kunjachan and V.S. Sasi Centre for Aeronautical Systems Studies & Analyses, Bangalore - 560075. #### ABSTRACT The damage analysis of two targets due to submunition-type missile warheads has been studied. The paper discusses (a) damage to a battlefield (comprising army personnel, tanks, armoured personnel carriers and soft-skinned vehicles) due to bomblet-type warhead and (b) the denial of an airfield comprising runway tracks inclined to each other due to blast-cum-earth shock (BCES) type of warheads. Simulation technique has been used in both the cases. In addition, a mathematical model has been discussed in the second case to compare the results of the simulation model. For comparison, a particular methodology for checking the denial criterion called conventional methodology has been used. Later, a new methodology has been incorporated for checking the denial criterion in the simulation model. A mathematical formulation of the new methodology has also been given. #### 1. INTRODUCTION Missiles are capable of carrying different types of warheads, viz., submunition, biological, concussion, incendiary, etc. The submunition type of warhead is mainly used against area targets, like troop concentrations, airfields, etc. The extent of damage to the targets depends on the type of the warhead and its lethal capabilities. During a war, one of the prime objectives of the friendly- forces is to deny the enemy airfields and also to destroy his aircraft on ground. Heavy casualties to enemy troops and armoured vehicles is also an important factor in winning a war. This paper is aimed to estimate the damage to specified ground targets due to submunition-type missile warhead, using a simulation technique. Only two types of warheads, viz., bomblet-type and blast-cum-earth shock (BCES) type are discussed in this paper. In the first part of this paper, damage to a battlefield comprising army personnel, tank, armoured personnel carriers (APCs) and soft-skinned vehicles (SSVs) due to bomblet-type warhead has been discussed. Second part discusses the denial of an airfield comprising runway tracks inclined to each other using BCES type of warheads^{2,3} ## Damage Assessment of a Typical Battlefield using Bomblet-Type Missile Warhead The trajectories of individual launch tubes and bomblets have been computed after their respective ejection timings from the warhead. The impact points of the bomblets on ground have been considered for the determination of distribution pattern of the bomblets on ground. This has been repeated for various missile warhead velocities. It is observed that the lethal radius of the warhead and the distribution pattern of the bomblets vary with the velocities of warhead and the heights of release. ## 2.1 Computation of Trajectories The following assumptions have been made for the computation of the trajectories of launch tubes and bomblets: - (a) The warhead is falling freely. - (b) The aerodynamic force acting on the modules and bomblets is the drag force (which includes various forces due to parachutes) acting opposite to the direction of the velocity vector. - (c) Parachute is a mass-less extension of the main body. - (d) Indian standard atmosphere, sea level condition, exist. The origin of reference frame for the computation of the trajectories is considered to be positioned at the point of ejection of the first module. Its Y-axis is vertically downwards and the X and Z axes together form a right-handed coordinate system. A three-dimensional point-mass trajectory model has been used for the computation of flight paths of the modules and bomblets, and the equations used for this purpose are $$m\frac{d^2x}{dt^2} = -\frac{1}{2}\rho SC_D V^2 \cos(\theta) \cos(\phi) \qquad (2.1.1)$$ $$m\frac{d^2y}{dr^2} = -\frac{1}{2}\rho SC_D V^2 \sin(\theta) + mg$$ (2.1.2) $$m\frac{d^2z}{dt^2} = -\frac{1}{2}\rho SC_D V^2 \cos(\theta) \sin(\phi) \qquad (2.1.3)$$ $$\theta = \tan^{-1} \left(\frac{dy/dt}{\sqrt{((dx/dt)^2 + (dz/dt)^2)}} \right)$$ (2.1.4) $$\varphi = \tan^{-1} \left(\frac{dz/dt}{dx/dt} \right) \tag{2.1.5}$$ where θ = Angle of elevation φ = Angle of azimuth CD= Drag coefficient ρ = Density of air g = Acceleration due to gravity m = Mass of the body For the computation of the trajectories of bomblets, skin friction coefficient of the ribbon has also been taken care of. #### 2.2 Denial Criteria For the estimation of the damage to the targe the following denial criteria have been considered In this model, a person falling within the lether radius of the warhead as well as the bomblet, has been considered as killed. In the case of tanks APCs and SSVs, a bomblet hit on it is taken as the condition for the denial. Mathematically, the sam can be described as If (X_w, Y_w) , (X_b, Y_b) and (X_p, Y_p) are the coordinates of the warhead, a typical bomblet and personnel respectively, the person is considered to be killed if the following conditions are satisfied: $$(X_w - X_p)^2 + (Y_w - Y_p)^2 \le lrwh^2$$ $(X_b - X_p)^2 + (Y_b - Y_p)^2 \le lrb^2$ (2.2.1) where lrwh = Lethal radials of the warhead lrb = Lethal radius of the bomblet Similarly, if (X_T, Y_T) are the coordinates of typical tank/APC/SSV, then it is considered to b killed, if $$\frac{(X_b - X_T)^2}{(l_T/2)^2} + \frac{(Y_b - Y_T)^2}{(b_T/2)^2} \le 1$$ (2.2) where l_T and b_T are respectively, the lengt and breadth of the tank and it is assumed that th tank is an ellipsoid. #### 2.3 Model A rectangular target of $L \times B m^2$ on which N_p number of personnel. N_T , tanks, N_{APC} , armoure personnel carriers and N_S , soft-skinned vehicle uniformly distributed, has been taken as the scenario. The N_p pairs of uniform random number within the target area have been generated to locate the personnel positions. Same method has been followed to generate the tank's, APC's and SSV' positions. These points are stored as a structure array in the computer. The aim points to drop the missile warheads are pre-decided. Warhead makes an impact at a point which is normally distributed around the aim point. Taking these points as the warhead mean impact points, the (x_b, y_b) coordinates of bomblet positions have been generated. To compute the damage to the target, the (x,y) coordinates of personnel, tanks, APCs and SSVs have been checked to ascertain whether the target is falling within the lethal radius of the warhead. If a person is falling within the lethal radius of the warhead as well as the bomblet, he is assumed to be killed and the counter is incremented by one and the (x,y) coordinates of that person are removed from the array. In the case of tanks, APCs and SSVs, the condition is checked for the possibility of a bomblet falling on it. If it is so, the counters are incremented by one and their (x,y) positions are removed from the array. This process is repeated for all persons, tanks, APCs and SSVs lying within the lethal radius of the warhead. The trial is repeated n times, and the ratios (number of targets killed/total number of targets) are computed for personnel, tanks, APCs and SSVs. These ratios give the probability of denial of personnel, tanks, etc. ## 3. DENIAL OF RUNWAY TRACKS USING BCES-TYPE WARHEADS BCES-type warhead, generally used against runway tracks, is capable of inflicting craters to the tracks, making them unserviceable. An airfield consisting of three tracks inclined at arbitrary angles (a main runway denoted 'RW', a carway denoted 'CW' and another runway denoted 'ARW') is considered for attack. Here, a simple layout of the airfield tracks where 'CW' makes an angle of '0° and 'ARW' makes an angle of '90° with the RW has been considered. The denial criterion of the airfield is that a strip of dimension $L_d \times W_d$ sufficient for an aircraft to take off in an emergency is not available on the track. A particular methodology for checking the denial criterion called conventional methodology has been used here for the comparison of simulation and mathematical model results. Later, the simulation results are modified by incorporating a new methodology for checking the denial criterion. ## 3.1 Conventional Methodology for Checking Denial Criterion Consider the case of a runway of length L and width W. Certain number of areas (called DMAl's) are cut on the runway and are divided into parallel strips so that, if one bomblet falls in a strip, it is assumed to be denied. Thus, if all the strips of all DMAI's of the runway are denied, the whole runway is considered to be denied. This methodology is termed as conventional methodology for checking the denial criterion. In the following sections, this methodology is first used to estimate the number of missiles required to deny the runway. Later, it is modified. DMAI's and strips are chosen in such a way that, if each strip has one bomblet, nowhere a strip of dimension $L_d \times W_d$ will be available. Number of strips N_s of effective width W_s in a DMAI is given by² 1, if $$W_d = W$$ $$N_s = \left\{ \left(\frac{2W}{W_d + 2r_b} \right) + 1, \text{ otherwise} \right\}$$ (3.1.1) where W, W_d are the width and denial width of RW respectively, and r_b , the lethal radius of the bomblet. #### 3.2 Simulation Model for Missile Attack In this section, Monte Carlo technique of simulation is used to find the number of missiles required to be dropped on the runway tracks to ascertain a specified level of damage. Aim points are taken as the centre of DMAI's. Let (x_d, y_d) be the coordinates of one of the aim points. To find the impact point, two normal random numbers x and y are generated as^{5,6} $$x = \sqrt{-2 \log(u_1)} \quad \sin(2\pi u_2)$$ and $$y = \sqrt{-2 \log(u_1)} \quad \cos(2\pi u_2)$$ where u_1 and u_2 are independent uniform random numbers in the interval (0,1). Then the coordinates of the impact point are given by $$x_I = x_d + x\sigma_x,$$ $$y_I = y_d + y\sigma_y,$$ (3.2.1) where σ_x and σ_y are the standard deviations of impact point in x and y directions respectively. Thus, due to its circular error probability (CEP), the warhead aimed at point (x_d, y_d) has fallen on point (x_l, y_l) . Assume that the warhead contains n_b number of bomblets, each of lethal radius r_b which, after detonation, are distributed uniformly within a circle centred at (x_l, y_l) , and of radius R_{wh} , which is called the lethal radius of the warhead. To generate the (x_l, y_l) coordinates of the ith bomblet, take a pair of independent uniform random numbers (v_1, v_2) from different streams of random numbers between 0 and 1 and put $$x_i = (x_I - R_{wh}) + (2R_{wh})v_1$$ & $y_i = (y_I - R_{wh}) + (2R_{wh})v_2$ The condition for the bomblet to lie within the lethal circle is given as $$\sqrt{(x_i - x_f)^2 + (y_i - y_f)^2} \le (R_{wh} - r_b)$$ (3.2.2) If this condition is not satisfied, go on generating different pairs of (x_i, y_i) till the condition is satisfied. Knowing the position of all the bomblets, it is ascertained that each strip of width W_s has at least one bomblet. If all DMAI's are denied, the experiment is a success, otherwise it is a failure. Trial is repeated say 1000 times and the probability of denial is calculated as the ratio of the number of successes to the number of trials. To ascertain the correct probability of denial, probability has been calculated n times (say 15 times) and the actual probability of denial has been obtained as the average of these n probabilities. In the next section, a mathematical model is presented for the comparison of simulation model. ## 3.3 Mathematical Model In this section, a mathematical model has be presented for comparison with the simulation model proposed in Section 3.2. In the mathematic model, the old methodology for denial criterion has been used. It is assumed that, if the results mathematical and simulation models agree for the old methodology, it will hold good for the ne methodology (Section 3.6) too. At first, consider the case of a single DMA Let this DMAI (say i^{th}) be divided into N_s^i number of strips. Then L_i = Length of i^{th} DMPI W_i = Width of the i^{th} DMPI L_i^k = Length of the k^{th} strip of i^{th} DMPI W_i^k = Width of the k^{th} strip of i^{th} DMPI According to the old methodology described in Section 3.1, a DMAI is considered as denied if each of its strips simultaneously has at least one bomb let. If $E_i^{r,k}$ is defined as the event that k^{th} strip of the i^{th} DMAI is denied, then the probability of denial of whole DMAI is the probability that all the strips of the DMAI are denied, i.e. $$P_i^d = P \left(\bigcap_{k=1}^{N_s^t} E_i^{s,k} \right) \tag{3.3.1}$$ Using the additive law of probabilities, one gets $$P(E_i^{s,k} \cap E_i^{s,l}) = P(E_i^{s,k}) + P(E_i^{s,l}) - P(E_i^{s,k} \cup E_i^{s,l})$$ (3.3.2) Equation (3.3.2) is substituted in Eqn. (3.3.1) for all the strip combinations and a generalised equation involving probabilities of events and their unions is obtained. To find these probabilities, the expected number of bomblets falling on the combination of strips taken one, two, N_s^i at a time is to be evaluated. Knowing the expected number of bomblets on a typical area, the probability of at least one bomblet falling on it can be evaluated by Poisson's distribution law. # 3.4 Expected Number of Bomblets over Specific Area First of all, the coverage of individual strips of any DMAI when one warhead is aimed at any other DMAI, has to be evaluated. Define $C_{i,j}^k$ as the coverage of k^{th} strip of i^{th} DMAI, when a missile warhead is dropped at the centre of j^{th} DMAI. The expression for $C_{i,j}^k$ is given by i^{th} $$C_{i,j}^{k} = \frac{1}{A_{i}^{k}} \int A_{i}^{k} \int P(Rwh,tj)dxdy$$ where the integral is taken over A_i^k which is the area of k^{th} strip of i^{th} DMAI and $P(R_{wh}, t_j)$ is the circular coverage function given by $$P(R_{wh}, t_j) = \frac{1}{\pi} e^{-\left(\frac{1}{2}(x-\xi)^2 + (y-\eta)^2\right)}$$ $$\int_{0}^{R_{wh}} \int_{0}^{\pi} e^{-\frac{1}{2}\left(r^2 + 2r\sqrt{(x-\xi)^2 + (y-\eta)^2}\cos\theta\right) r dr d\theta}$$ R_{wh} = lethal radius of the warhead. $t_j = \sqrt{(x-\xi)^2 + (y-\eta)^2}$, is the distance of an arbitrary point (x,y) of the target from the aim point $P_j(\xi,\eta)$ where P_j is the centre of the jth DMAI. Average area covered by one bomblet of the missile is $$A_{av} = \frac{\pi \left(R_{wh} \right)^2}{n_h}$$ where n_b = Number of bomblets in one warhead, distributed uniformly within its lethal radius. Thus the expected number of bomblets falling on kth strip of ith DMAI when one warhead is dropped on jth DMPI is given by $$n_{i,j}^{k} = \frac{L_i^k \times W_i^k}{A_{cv}} \times C_{i,j}^k$$ (3.4.1) As a corollary of the above relation, the number of bomblets falling on k^{th} strip of i^{th} DMAI due to all DMAI's, when n_j warheads are dropped at jth DMAI is $$n_i^k = \sum_{j=i}^{N_d} \left(n_j \times n_{i,j}^k \right) \tag{3.4.2}$$ where N_d is the total number of DMPI's. Similarly, it is shown in the succeeding sub-sections that the expected number of bomblets falling on the union of strips is the sum of the expected bomblets falling on the individual strips. ## 3.5 Probability of Denial of Complete Airfield Let the airfield tracks have N_d ($N_d = 8$ in this case) number of DMAI's, each DMAI divided into N_s^d number of strips. Thus there are in all $$N_s = \sum_{i}^{N_d} N_s^i$$ strips, irrespective of the DMAI to which they belong. Following the concept of addition of expected number of bomblets, $n_{i,j}^{k,l}$, $n_{i,j}^{k,l,m}$ and $n_{i,j}^{k,l,m}$ are defined as the average number of bomblets falling on the union of $(k \& l)^{th}$, $(k \& l \& m)^{th}$ strips of i^{th} DMPI when one warhead is dropped at j^{th} DMPI. Then $$n_{i;j}^{k,l} = n_{i;j}^k + n_{i;j}^l$$ $n_{i;j}^{k,l,m} = n_{i;j}^k + n_{i;j}^l + n_{i;j}^m$ (3.5.1) Using Eqn (3.4.2), the average number of bomblets falling on the union of $(k \& l)^{th}$, $(k \& l \& m)^{th}$ strips of i^{th} DMPI when n_j warheads are dropped at j^{th} DMPI can be calculated. Similarly, the number of bombs falling on the combination of any number of strips is nothing but the sum of the bomblets falling on the individual strips. Let $E_{pqr...j}^{s;klm...}$ be the event that at least one of the strips out of k^{th} strip of p^{th} , l^{th} strip of q^{th} and so on DMPI, due to a warhead dropped at j^{th} DMPI is occupied. The probability of occurrence of this event is defined by $$P_{pqr...j}^{s;klm} = P\left(E_{pqr...j}^{s;klm}\right) \tag{3.5.2}$$ Thus the probability that at least one of the strips out of k^{th} strip of p^{th} DMPI, l^{th} strip of q^{th} DMPI and so on is occupied due to a bomb dropped at j^{th} DMPI is given by $$P_{pqr...j}^{s;klm} = 1 - e^{-n_{pqr...j}}$$ (3.5.3) where $$n_{pqr...j}^{klm} = n_{p;j}^k + n_{r;j}^m + \dots$$ Similarly, the probability that union of (k, l, m,) strips of p^{th} DMPI has at least one bomblet, when warhead is dropped at j^{th} DMPI is $$P_{p,j}^{klm..} = 1 - e^{-n_{p,j}^{klm..}}$$ (3.5.4) Thus, if P_i^d is the probability that all the strips of i^{th} DMPI are occupied due to $n_1, n_2 \dots n_8$ warheads dropped respectively at $P_1, P_2 \dots P_8$ DMPI's, then $$P_{d}^{i} = \sum_{k} P(E_{i}^{s,k}) - \sum_{k,l} P(E_{i}^{s;k} \cup E_{i}^{s;l}) + \sum_{k,l,m} P(E_{i}^{s;k} \cup E_{i}^{s;l} \cup E_{i}^{s;m}) - \sum_{k,l,m} P(E_{i}^{s;k} \cup E_{i}^{s;l} \cup E_{i}^{s;m} \cup E_{i}^{s;m})$$ (3.5.5) where k,l,m,n stand for strip numbers of i^{th} DMPI. Probability, P of total runway denial is the probability that all DMAIs are denied. Thus, if P is the probability of occurrence of event E_i^d , i.e., denial of lth DMPI due to n_j warheads dropped at jth DMPI, then the total probability that all the DMPI's are simultaneously denied is $$P = P \left(\bigcap_{i=1}^{8} E_i^d \right) \tag{3.5.6}$$ When intersection is converted to union, one gets $$P = \sum_{i=1}^{8} P(E_{i}^{d}) - \sum_{i,j} P(E_{i}^{d} \cup E_{j}^{d}) + \sum_{i,j,k} P(E_{i}^{d} \cup E_{j}^{d} \cup E_{k}^{d})$$ (3.5.7) Probability, P is the level of assurance with which runway can be denied be n_j warhed dropped at j^{th} DMPI, where j = 1 to 8. If this level assurance is less than the stipulated level assurance, n_j can be increased, on a DMPI, which probability of denial is low. Equation (3.5.7) can be written in a simplification way for computation. The condition of denial whole runway is that all the DMPI's should denied, which in turn, means that all the strice should have at least one bomblet due to n_1 , n_2 ... warheads simultaneously dropped at P_1 , P_2 DMPI's. Thus Eqn (3.5.7) can be written in the form $$P = \sum_{k=1}^{N_S} P(E^{s;k}) - \sum_{\substack{k,l=1\\k\neq 2}}^{N_S} P(E^{s;k} \cup E^{s;l}) + \sum_{\substack{k,l=1\\k\neq 2}}^{N_S} P(E^{s;k} \cup E^{s;l} \cup E^{s;m})$$ $$k_i l_i m = 1$$ $$k \neq l_i k \neq m$$ (3.5) Here the identification of strip by DM number has been dropped. ## 3.6 Modified Methodology for Checking Deni Criterion It is observed that the old methodology checking the denial condition is sufficient but n always necessary. It can be seen that, in some the cases, even if a strip does not have a bomble the distance between two bomblets in neighbouristrips is less than W_d. Keeping this in min conventional methodology is modified. In t following sections, determination of the aim poin has been explained and then a mathematic formulation of the methodology has been presented³. #### 3.7 Determination of Aim Points (DMPI's) Considering the case of runway, let the runw be divided into N_p number of sections given by $$N_p = \begin{cases} Int(L/L_d) + 1, & \text{if } remainder \neq 0 \\ L/L_d, & \text{otherwise} \end{cases}$$ (3.7.1) where L and L_d are the length of runway and the denial length, respectively. Thus the length L_p of each section is given by $$Lp = \frac{L}{N_p} \tag{3.7.2}$$ and $$N_{dmpi} = N_p - 1$$ where N_{dmpl} is the number of aim points which are in the middle of corresponding two sections. These points are the aim points for the missile warheads. Due to errors in landing, let these warheads fall at two extreme ends at a distance 3σ from the aim point. Thus if L_f is the free-length available in a particular strip, then $$L_f = L_p - 2R_{wh} + 6\sigma (3.7.3)$$ Since the criterion for the runway denial of each runway is that nowhere an area of dimensions $L_d \times W_d$ should be available for the runway to be denied, $$6\sigma < L_f < L_d \tag{3.7.4}$$ If this condition is not true, then the number of sections is increased by one. Equation (3.1.1) gives the number of strips in which full runway is divided. Similarly, the aim points and strips on other tracks also can be determined. Runway, carway and auxiliary runway are attacked by dropping a desired number of missile warheads on each of these DMPl's. After attacking the airfield with missile warheads the position of each bomblet is simulated. Then each bomblet is checked whether it falls on runway, carway or auxilliary runway. After finding the simulated position of each bomblet, it is found that on which strip of the tracks bomblets fall. The strips are numbered from top to bottom and on each strip the bomblets are arranged in the increasing order of their x-coordinates. The methodology for checking the denial criterion is described here. ## 3.8 Mathematical Formulation of the Methodology Consider the case of a runway. After a desired number of warheads are dropped on the runway, the position of each bomblet on the runway is found and that the RW is denied or not is ascertained. Let (rwax, rway) and (rwcx, rwcy) be the respective left-top end and right-bottom end of the runway. Let the runway be divided into n number of strips. Strips are numbered from top to bottom. X-Y coordinate system is chosen; such that positive Y-axis is down towards the bottom of RW and RW is taken in the first quadrant. For all the strips j, let mj be the total number of bomblets falling on jth strip (Fig.1). Let (x_i^j, y_i^j) be the position of ith bomblet in jth strip for i = 1, 2,mj. Figure 1. Bomblet-type warhead dropped on an area target Put $x_0^j = \text{rwax}$ and $x_{mj+1}^j = \text{rwcx}$, for all j. For all j define the set $B_j = \{1, 2, 3...$ $mj, mj+1\}$ Now for all $i \in B_j$, j = 1, 2, ..., n, define the pair (x_i^j, x_r^j) as follows If $m_i \neq 0$, define $$\begin{aligned} x_i^j &= \begin{cases} x_{i-1}^j \text{, if } i = 1\\ x_{i-1}^j + r_b \text{, if } 1 < i \le mj + 1 \end{cases}\\ x_r^j &= \begin{cases} x_i^j \text{, if } i = mj + 1\\ x_i^j - r_b \text{, } i < mj + 1 \end{cases} \end{aligned}$$ if mj = 0, define $x_i^j = \text{rwax} \text{ and } x_r^j = \text{rwcx}$ Let $j \in J$, where $J = \{1, 2,, n\}$ for i = 1, check the inequality $$x_r^j - x_l^j \ge L_d \tag{3.8.1}$$ If Eqn (3.8.1) does not hold, we say the trial is a success for i^{th} bomblet on j^{th} strip, and replace x_i^j and x_r^j in (3.8.1) for the next i and continue the process. Otherwise, if n = 1, trial is a failure on the runway if j = 1, put yt = rwax and xyt = rwax if j = n, put yb = rwcy and xyb = rwax if $j \neq 1$, define the set $$U = |y_i^{j-1}, x_i^j < x_i^{j-1} < x_i^j + L_d$$ if $i \neq n$, define the set $$L = \{y_i^{j+1}, x_i^j < x_i^{j+1} < x_i^j + L_d\}$$ If U or L is empty, trial is a failure on the runway (or runway is not denied). Otherwise, Let $y_{i0}^{j-1} = \text{maximum of the set } U$ and y_{i1}^{i+1} = minimum of the set L Put yt = $y_{i0}^{j-1} + r_h$ and xyt = $x_{i0}^{j-1} + r_h$ $$yb = y_{i1}^{j+1} - r_b$$ and $xyb = x_{i1}^{j+1} + r_b$ Now check for $yb - yt \ge W_d$ (3.8.2) If Eqn (3.8.2) holds, the trial is a failure on the runway. Otherwise, replace x_i^j in (3.8.1) by $$x_i^j = \begin{cases} max(xyt, xyb), & \text{if } j=1 \text{ or } j=n \\ min(xyt, xyb), & \text{otherwise} \end{cases}$$ and continue the process. If the trial is a success for all i = 1, 2, ... mj + 1, on j, we say trial is a success on the strip. If the trial is a success on all the strips, it is success on the runway, i.e. the runway is denis Similarly, the denial of other tracks can determined. (Fig.2). #### 4. DATA USED ### 4.1 Bomblet-Type Warhead Length of the target : 1000 Breadth of the target : 1000 Number of bomblets per warhead : 1150 Number of persons per km² : 720 Number of tanks per km² : 52 Number of armoured personnel carriers per kill Number of armoured personnel carriers per ki Number of soft-skinned vehicles per km²: 62 CEP of warhead : 100 ## 4.2 BCES-Type Warhead Runway dimensions: Length = 3100 m, Breadth = 50 m Carway dimensions: Length = 3100 m, Breadth = 25 m Auxiliary runway dimensions: Length = 2100 m breadth = 50 m Denial parameters : Denial length = 1000 m Denial width = 25 m CEP of the warhead : 150 m Lethal radius of the warhead : 250 n Number of bomblets n_b : 32 Lethal radius of the bomblet : 3.2 m ### 5. RESULTS & CONCLUSION Table 1 gives the kill probabilities of a typic battlefield comprising personnel, tanks, APCs at SSVs, due to bomblet-type warheads. The math matical model of Section 3.3 is quite generalise and takes into account any number of DMPI's. Figure 2. Simulation of a typical trial the case of old methodology for checking the denial criteria, the results of simulation when different number of missile warheads are dropped on different DMPI's have been compared with those obtained by mathematical model. A good agreement by both the methods has been observed. With the data given in Section 4 and using the old methodology for denial criteria, the simulation model has shown that 48 warheads are required to be dropped on the airfield to achieve a denial probability of 90 per cent (Table 2). The mathematical model, when similar number of missiles are dropped, also gives 93 per cent probability of denial. By taking into consideration the modified methodology for checking the denial criteria, the number of missiles required is much less, viz., 18. If mid-bombing method is used (dropping warheads on DMPI's located in between RW and CW and at the crossings of the tracks), the number of warheads required for 90 per cent denial probability is still less, viz., 17 (Table 3). Figures Table 1. Kill probabilities due to bomblet-type warhead | | One warhead
dropped at the centre
of four sectors of the
target | One warhead
dropped at the
centre of the target | | |-----------|--|---|--| | Personnel | 0.560 | 0.160 | | | Tank | 0.070 | 0.018 | | | APC | 0.040 | 0.012 | | | SSV | 0.060 | 0.013 | | 1 and 2 give computer outputs of simulation results using bomblet-type warheads and BCES-type warheads, respectively. Table 2. Comparison of probabilities of denial of airfield (old methodology) by simulation and mathematical models | No. of
warheads
on three
DMPI's
on RW | No. of
warheads
on three
DMPI's
on CW | No. of
warheads
on two
DMPI's
on ARW | Probabilities of denial | | |---|---|--|-------------------------|-----------------------| | | | | Simulation
model | Mathematical
model | | 1,1,1 | 1,1,1 | 1,1 | 0.0000 | 0.0000 | | 2,2,2 | 2,2,2 | 2,2 | 0.0145 | 0.0160 | | 3,3,3 | 3,3,3 | 3,3 | 0.1604 | 0.1874 | | 4,4,4 | 4,4,4 | 4,4 | 0.4195 | 0.4786 | | 5,5,5 | 5,5 | 5,5 | 0.6612 | 0.7119 | | 6,6,6 | 6,6,6 | 6,6 | 0.8211 | 0.8502 | | 10,13,13 | 1,0,0 | 6,5 | 0.9045 | 0.9339 | Table 3. Probabilities of denial of airfield using simulation (new methodology) | No. of
warheads
on RW
DMPI's | No. of
warheads
on CW
DMPI's | No. of
warheads
on ARW
DMPI's | No. of
warheads
on MID
DMPI's | Probabilities
of denial | |---------------------------------------|---------------------------------------|--|--|----------------------------| | 1,1,1 | 1,1,1 | 1,1 | 0,0,0 | 0.19 | | 2,2,2 | 2,2,2 | 2,2 | 0,0,0 | 0.82 | | 3,3,3 | 3,3,3 | 3,3 | 0,0,0 | 0.98 | | 2,3,3 | 2,2,2 | 2,2 | 0,0,0 | 0.90 | | 0,0,0 | 0,0,0 | 4.4 | 0,5,5 | 0.94 | | 0,0,0 | 0,0,0 | 4.4 | 0,4,5 | 0.91 | #### ACKNOWLEDGEMENT The authors are thankful to Dr N Srinivasan, Director, CASSA, Bangalore, giving permission to publish this paper. #### REFERENCES - Singh, V.P. & Sasi, V.S. A simulation model the study of effectiveness of antipersonnel antitank missile warhead. CASSA, Bangale CASSA, S-4-92. - Singh, V.P., et al. A mathematical and simulat model for number of missiles required to deny airfield. CASSA, Bangalore, CASSA-S-2-92. - Singh, V.P., et al. A simulation model for denial of an airfield consisting of tracks inclinat at arbitrary angles by missile warheads. CASS Bangalore, CASSA-S-3-93. - Weapon Planning Directives (1/82), Air He New Delhi. - Gottfried, Byron S. Elements of stochas process simulation. Prentice-Hall Inc., New Yo 1984. - Shannon, Robert E. Systems simulation-the and science. Prentice-Hall Inc., New York, 197. - Didonato, A.R. & Jarnagin, M.P. Damage to circular target by a Guassian distributed warhs with uniformly distributed bomblets. Open Res., 1996, 14(6), 1014-23. Contributors Dr V.P. Singh received his PhD in Shock Waves from University of Delhi in 1972. He joined DRI in 1966 and is currently heading the Weapons Systems Evaluation Group, at Centre for Aeronauti Systems Studies and Analyses (CASSA), Bangalore. He is member of Aeronautical Society India, Operational Research Society of India and Computer Society of India. He has published th books, one monograph and more than 40 research papers. # SINGH, et al :ESTIMATION OF TARGET DAMAGE DUE TO SUBMUNITION-TYPE WARHEADS Shri T. Kunjachan obtained his MSc in Mathematics from Kerala University in 1985. He joined DRDO as Scientist at Scientific Analysis Group (SAG), Delhi, in 1989. Currently, he is working at Centre for Aeronautical Systems Studies & Analyses (CASSA), Bangalore. Shri V.S. Sasi obtained his MSc in Mathematics from Kerala University in 1981, Post Graduate Diploma in Computer Science, Systems Analyses and Applications from Board of Technical Examinations, Maharashtra in 1987 and MTech in Modelling and Simulation from Poona University in 1991. He joined DRDO in 1984 at High Energy Materials Research Laboratory (HEMRL), Pune and is currently working as Scientist at Centre for Aeronautical Systems Studies & Analyses (CASSA), Bangalore. He is a member of the Aeronautical Society of India.