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FLOW BEHIND WEAK AND STRONG SHOCK WAVES IN WATER
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Unsteady flow water behind weak and strong shock waves produced by the
detonation of a spherical charge, is studied by the method of perturbations.
Results are compared with those obtained by similarity methods elsewhere.
Effect of gas bubble on the shock front is neglected in the present paper.

1. INTRODUCTION

The knowledge of flow profile behind the primary stock waves in water is of
immense importance and also of academic interest. Using the method of similarity,
Kochina and Melnikova'"? have studied flow profile behind the shock waves, produced
by the explosion and by the piston motion respectively, and by perturbation method,
this problem is solved for flow behind shocks in air by Singh®. Assuming energy bet-
ween the shock front and the piston surface to be variable, flow profile behind the
shock in water has also been studied*.

In the present paper, we have studied the unsteady motion of water behind the
shock waves, using perturbation method. Law of attenuation of shock was studied
earlier in a series of papers by the first author® *, theoretically as well as experimen-
tally. In the above papers and also in the present paper, effects of gas bubble on the
flow are ignored.

Flow behind shock waves is governed by the equations of motion of compressible
fluids which are integrated by the methods of perturbations, taking shock front as one
of the boundary. Equations of motion are reduced to two differential equations in
the non-dimensional fluid parameters £ (A, A p), g (A, A p) and A, where /. g, and A are
non-dimensional fluid velocity, density and distance respectively. Expiessing para-
meters f and g in the form of converging serics, variation of these parameters with
respect to A and shock strength Ap is obtained. Variation of parameters fand g
behind spherical shock waves is shown in Figures 1 to 4 for the two cases of weak and
strong shocks respectively, These results are similar to those obtained earlier® in
piston problem.

2. BAsic FORMULATION OF THE PROBLEM

We have earlier studied® the propagation and attenuation of spherical shock
waves, produced by the detonation of an explosive charge in water. It is our aim in the
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5 ﬁre‘s;eht paper, to study the unsteady fluid motion behind the spherical shock waves.
- Basic equations governing this motion are,

aop 2Pu

27 T o Pu =0 . )
ou op

7. T 4 —+T57=0 -:(2)
B 3

P?T P dt . ,“\j)

Hugoniot equation of state of water is i
U=a + bu, ...(3)
where a = 1.5565, b = 1.9107 (Madan®) and other symbols have usual meaning.

If at any time ¢, R is the radius of the shock front, the jump conditions across
the shock front are?,

s = P 33— 1I{b— 3 — NP i (5)
U= adlip — 8 (b — 1)} ..(6)
E}= E* +[6—1)alb—3@®—DP (D

where subscript 2 denotes values of fluid paraniéters behind the shock front and
3 =p,/p, is the shock compression, Variation of shock compression 8 with the shock
radius is given by®.

S[@a@®— Db —30B -1 =320 J{4= P, R) .(8)

where Q- is the heat of explosion per unit volume, R = R/R,, R, being the radius of
undetonated explosive charge. Flow behind the shock wave is governed by equations
of motion (1)—(4). Thus our aim in the present paper is to fiad the solution of these
equations with the help of boundary conditions (5)—(7).

We define the shock strength by a parameter Ap so that
AP = (P, — P[P =35 — 1 .

where AP is assumed to be very small for weak shocks and for strong shocks 0 < A p
< 1. Largest value of Ap is 0.7 for the available conventional explosives. Lsing ex-
pression (9) in (8) we get after differentiation and expansion (Appeadix A).

éap
IR BAPIR .. (10)

=P+ B AP + B AL +
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where

,.‘_)‘. s . 1’1 - | G -.-‘.
Bo= 32,1 =—3(2b — 1)/4,B, = 3 (4b — 1)/8. ' T e (13)
STUTIW
; 3. DiscussioN OF THE PROBLEM
To evaluate the variation of fluid parameters behind the shock front, we de-
fine non-dimensional parameters f, g and A as,

;}l‘U'= f?('\::AP‘)’J Plpa == g(l\;‘AP), I’IR = = : \ '--(12)

where f and g are functions of A and AP, r the radial dxstancc measured from the point
of explosion and u,p the fluid velocity, density af distance are respectwely Substitut-
ing the parameters from (12) in equatlons (1) and (2), one gets after some simplifica-
tiofi (Appéndrx A) /

g +(f—Ner— PAPg, — gBAP (1 + AR + 2 X7 =0 ..(13)

7 av S3+b0B -1 B2 i
(T/—aA—P{—_ +.pr),.,ﬁAP =LA~ m——u—}

-.(14)
where f, g, [ Ao, &, BT€ partlal derivatives of f and g wnth respect to Aand A re-

spectively. Since fand g are functions of A and AP, we can write . fand g in the form
of converging series.

s g
@, AP) = fu (A) +f1 ()\) AP +f2 (2) AP* + .. ...(15)
80, AR) = £ () + & (AP + 5, () AF° + .(16)
where fo, 80, f1, &1 €tC are funcixo'ns of A only ; 3 o

(*2) . After substituting the expiessions (15)-and (16) for f2rd gin (13) and (14) and
comparing the coefficients of same powers of AP, one gets equations of dnﬂ'erent order
as zewouth order equations.

& fy + (fo = /\) g + 2fo gA'=0 , «.(17)
(fo— ) f + BT —0 ...(18)
First order equations : ‘

& i ¥ ffn — A 8 = h, =0, &l N § ool ; «.(19)

(o & (fo—A) f; +& +h=0 2 e s ...(20)

Second order equations

& i+ = Ngi —h=0 e @)
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g(fo— 2 f,+8 +h=20 (22)
where

hy=fig fi +(@2b—2—g, g')g;—Bog (fy + bfo)
hy = —g, fi — fi & + Bo (80 + 81) — 2(fi 80 +So8)/A
hy = f2 & fo +f180fY
+g (8t —g8 —&(2b—2g, +2° - 6b

+31—2; (8.8, —20+2) -(23)

— Bog [fo(b* —2b) + f1b + 21)]
— B1 8 (b fo+ 1)

hy = —ng; _glfl' - /s g:; — 13 g;

— Bo (80 — & — 28)) + B1 (8 + &)
—2(fogat+risn +fag.,) A=

Solving eqns. (17)—(22) for fu, o, f1 &1 2nd f;, g2 One gets

o =2 0 (o — W7 = 1) .29
B — 2 (fo— M &l ((fo = N = 1] 29
G — e (fo = M) + B lge (S = W = 1] « @8
T — by + (fo— N WS — A — 1] 2R
95— — s (fo— D) + g (o — W — 1) - 28)
9B _ s + by (fo — Mo = 2 = 11 - (29)

Equations (24)—(29) are six simultaneous differential equations in fy, &0, /1, &, /2 and
g.. Boundary conditions for f;, 8o, /1, &1, /2 and g, are obtained from relations (5)—
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(6), i. e. the jump conditions across the shock front. At the shock where A = 1, we
have

fo=0 fi=1 fi=—1

g8 =1 g =0 g =0 ...(30)
We have integrated the differential equations (24) — (29) subject to the boundary

conditions (30), using Runge-Kutta method of fourth order the results are shown in
the Figs. 1 to 4.
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F1G. 1. Variation of f versus A for weak shocks.

4. DiscussioN AND THE CONCLUSIONS

In Figs. 1 and 2, we have shown the variation of the parameters fand g versus
A for AP = 0.001, 0.005 and 0.01 respectively. This is the case of weak shocks. In
Table I, values of shock pressure p. are shown for various values of AP.

It is seen from Fig. 1 that particle velocity ratios u/U = f(\) increases continuously
as A decreases from 1 to 0.1, value of f being approximately zero at A = 1 for weak
shocks. TIn Fig. 2, variation of density ratio g (\) is shown. Itisseen that for Ap
= 0.001, g first increases and when A = 0.19, it starts decreasing. The trend of the
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FI1G. 2. Variation of g versus » for weak shocks.
TABLE I
Weak Shock Strong shock
Ap p2(Kb) ap P2(KDb)
0.001 0.0243 0.150 5.6062
0.005 0.1229 0.250 12.6925
0.010 0.2492 0.350 24.6650

density variations in the present problem is similar to that of piston problem®. In Fig.
3 fis plotted versus A for the case of strong shock waves. For A = 1, value of f = u,/
U = (3 — 1)/3, which first decreases, then starts increasing exponentially, as A decre-
ases from | to zero. Similar trend is found in the variation of g for strong shocks.

Once conditions at the shock front are known, variation of fluid parameters is
known from shock front to the point of explosion. Conditions at the shock front are
functions of shock radius, which is given by Singh et al 8.

In the present work we have ignored the presence of gas bubble at the centre.
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Fic. 3. Variation of f versus A for strong shocks.
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APPENDIX A
1. Derivation of the Equation (10)

Substituting equation (9) in (8) we get

(1+4p) AP* K
[T+A@-0bpr R

(A1)
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where
K=3¢QJR: [4np, a®. (A2

Taking logs and differentiating (A.1) with respect to R we get

oAp _  3Ap & 77 s 2 o
IR — o DHAPQ B apta=—n)][l +%4p
dz (l_;b_) Ap. ...(A.3)

Expanding the right handside and rearranging the coefficient of Ap and Ap® etc.
we get

—3

AR o1 2 LRAP.
&R R

Where
B =Bo+ B AP + B, AP* + ...
Bo = 3/2
B = —3(26— 1)4
Ba = 3 (4b — 1)/8.
2. Derivation of Equation (13) and (14)
Since entropy variations are negligible in underwater shocks, we have

i—(i’;) -%:czai
or P ), or or

where

c* = 9 p[eP),
is the sound velocity in compressed water.
Using equation (5) we get

s _ O _ @B+ —1)
~ %, T B-60G-DF

c

In equations (1) and (2) independent parameters r and 7 are transformed to non-di-
mensional parameter A and Ap by the following operators

. O s gy . e
- R @A R 5Ap
M - CO

r R @
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Using (A.5) aloqgwith (A-.4), (9) (10) and (12) in equations (1) and (2) we get equa-
tion (13)—(14) after some simplifications.

3. Comparision with Ref. Ranga and Ramana®*
Although problem in reference 4 is dealt using similarity methods, but trend in the
variations of fluid parameters behind the shock in piston problem and explosion pro-

blem should be comparables. The similarity parameter A in ref.¢ is same asA of our
paper, as follows. In reference* equation (33) and (18) are as

A = (A[P)5" ri=s ..(33)
rs = otf, ...(18)
Eliminating ¢ from (18) and (33) we get '
A = (4[P1)*'? « (r[r,)
Now at the shock frontr = r,, A = 1

S (AIP)EE e = 1,




