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ABSTRACT

A mathematical model has been developed to assess the damage to composite panels subjected to
blast loading due to detonation of a conventional warhead in its vicinity. The theory is based on large
dynamic deformation incorporating the effects of transverse shear deformation. A damage criterion
based on Tsai-Hill/Hoffman failure criterion has been used. The results have been compared with those

obtained by classical theory.

1. INTRODUCTION

The blast wave resulting from the detonation of a
conventional warhead is a potential threat for a military
aircraft in a battlefield. Among the various aircraft
components, its structure is the largest of potentially
vulnerable items. A mathematical model for damage to
aircraft skin panels due to blast loading was developed
by Singh and Singh', in which the damage to isotropic
panels was considered and a threshold distance for
permanent damage was obtained using a modified form
of von-Mises criterion.

Since many of the modern fighter aircraft (e.g.,
LCA) contain components comprising composite
materials, the assessment of damage for such
components would be useful for aircraft designers.
Recently, a number of papers®> have appeared on this
subject. In particular, the paper by Librescu and Nosier’
is worth noting, in which the response of laminated
composite flat panels to sonic boom and explosive blast
loading is obtained theoretically.

In the present paper, a mathematical model has been
presented to assess the damage to composite panels
subjected to blast loading due to detonation of a
warhead in its vicinity. This paper emphasises the

vulnerability aspect of the problem rather than the
response aspects as in the above mentioned papers. The
vulnerability for a given structural element and a given
warhead can be quantitatively expressed in terms of a
threshold distance for permanent damage, i.e., the
maximum damage up to which the structure is likely to
suffer a permanent damage for a given warhead, based
on Tsai-Hill/Hoffman failure criterion.

2. MATHEMATICAL MODEL
2.1 Panel with Single Ply with Fibre Direction
taken as x-axis
When the distance of the panel from the point of
explosion is sufficiently large, the dynamic response lies
within elastic regime and is governed by the following
system of partial differential equations :
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where a and B are rotations, w is lateral deflection, h is
. the thickness of the panel, fand k are tracing constants
identifying the effects of rotatory inertia and transverse
shear deformation respectively; D,, D, and D, are the

orthotropic stiffnesses defined as
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where E,, Ey are Young’s moduli in fibre and transverse
directions respectively, G, G, G,, are orthotropic
shear moduli, v Var Yy are Poisson’s ratios, p is the
material density, A is the panel area and p(x,y,t) is the
externally applied load taken to be the normally
reflected blast pulse (assumed to be uniform over a
panel of small dimensions) and is given by®

Py, 1) = p.(1 - t/ty) e~ @
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where p,, p,, p, are the reflected blast pressure for
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normal incidence, incident blast overpressure and
ambient pressure respectively.

The solution of the problem lies in determining the
panel deflection » and the rotations « and B subject to
the prescribed boundary conditions. The structural
element under consideration is a panel bounded by
stiffners on all sides. The panel has been considered to
have the following dimensions : length a, width b and
thickness h, with the origin of coordinate axes at a corner
of the panel. The boundary conditons are®:

(i) Simply supported panel (SS)

3(0 2w

B=0,0=0 "+ Vy—7 5?2 =0,atx=0,a

a=0,0= o‘z}y‘z"wna"’_om 0b (g
(ii) Clamped in panel (CL)
0=0,a=0,=0,atx=0,aandy=0, b @)

In accordance with the conditions occurring in
aircraft structure, the panel has been taken to be rigidly
framed, hence the edges of the panel have been taken to
be immovably constrained. An approximate solution
has been attempted using Galerkin method. The general
form of solution assumed is’.

@ = W (%) P (y) T(1)
0 = I'popm(X) @ an(¥) WD)
B = Apn(x)Pp.(») T(0) (8)

where in the SS case :
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where | are the roots of the equation :
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Similar relation holds for y,. Changing sin and sinh
to cos and cosh, respectively and replacing the minus
sign in functions for $S,(x), etc, by plus sign, the
corresponding functions for even values of m are
obtained.

Now, employing Galerkin’s method, the following
algebraic equations are obtained from the Eqns (1) and
(2) (for both SS and CL cases) :

Nm = !
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whence I and A can be expressed as :
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Now employing again Galerkin’s procedure in the
Eqn (3), and using (14) and (15), the equation of motion
is finally obtained in the following form :

AT + BT+ C13=P(t) (16)

where for the SS case :
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dp=01+ n,ﬁ)(l -nk+ —: sin u,,),
5 Rl 2
dy=|1-n;+ sin e, (1 + 717),
Hom

dn:,(l—n}, +uimsinpm)(l—n3+%sinu,,)

The non-linear ordinary differential Eqn (16) was
solved numerically by Runge-Kutta-Gill method,
assuming the deflection and the velocity of the panel to
be zero initially.

2.2 Calculation of Stresses and Failure Criterion

For large deflection of panels, bending and
stretching are coupled, hence the stresses consist of the
sum total of bending and membrane stresses :

(00 Oy O) = 71,' (Ny, Ny, Ny,)

T 1}12_32 My, My, M) &

where N, N, N, are the membrane stresses and M,,
My, M,y are the bending moments.

The magnitude of the stresses would depend upon
the intensity of the blast pulse, which in turn depends
upon the distance between the structural element and
the point of explosion. For a given explosive (whose
strength is known in terms of TNT equivalent), the
threshold distance for permanent damage is defined
here as the distance at which the explosion of a given
mass of TNT is just sufficient to chuse the failure of the
panel as characterised by Tsai-Hill/Hoffman criterion
of failure®. -

o} _ 0103 o2 A L e
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2
+(%’%¢)02+%—150 (18)
where q,, 5,, o,, are the stresses in the fibre direction,
transverse direction and shear stress, respectively; F-
and F,. are ultimate strengths in tension and
compression respectively in the fibre direction; F,; and
F, are ultimate strengths in tension and compression

respectively in the transverse direction and F,, is the.
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ultimate shear strength. Since the x- and y-axes have
been taken to be parallel to the fibre and transverse
directions respectively, hence

0| = Oy, 03 = 0y, O3 = Oy,

2.3 Generalisation for a Laminate Panel Consisting of

Several Plies at Different Orientations

2.3.1 Moduli for Orthotropic Laminate with Several
Plies

Thus the formulation developed here was limited to
a panel consisting of a single ply and a coordinate system
so chosen that x-y axes coincide with the fibre and
transverse directions, respectively. But most of the
composite panels in applications are in laminate form
comprising several plies at various orientations. The
formulation described above can be generalised easily
for laminates especially for orthotropic laminates, the
most widely used ones in applications. We consider the
ply pattern : 0°/6°/—6° so as to produce an orthotropic
panel, where 6 is the angle made by the fibre with the
reference axis.

The stress-strain law under plane stress conditions
for a single ply with the axes parallel and transverse to
the fibre direction (i.e. 6 = 0) are :

(o 0,00  0)50) 0 €
0, [=]01200)  02(0) 0 £ (19)
012 0 0 Q“(O) €12

where

QII(O) = E,\j(l - Vx_\'v_\'x)v QIZ(O) = V\xExj(l - V.n"{\'x)
02,(0) = E\/(] - ny")'x)r Qs6(0) = Gx‘\'

For a single ply in which fibres make an angle 6 with

F»

"

a reference axis fixed in the laminate, the stress-strain

law is given by :

Oy 010 01200) 06(0) || &
oy [=]| C1(0) 02(0) Q%) || & (20)
Gy Qis(0)  0x(0)  Qgs(0) || Exy

where Q;(0) are related to Q,;(0) by the follbwing
equations :
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F(x, y, 1) = F*(x, )£t (28)

Using the conditions of rigid framing of edges
together with the Eqns. (25) and (27), the following
equation is obtained :

h%n? VycEx +_E_Y ol
16(1 — vy vy,) a? b?

E, VxE ) ,
(5058)

h2 a? 2m b2 2
_ﬁ[EchosT.’.Exa_z-cosTny] (29)

F*(x,y) =

(b) CL panel : In this case, the solution is assumed in the
form :

ox,y, = hf(’) Cosz % 0082 _’%}’_ (30)

The stress function in this case is obtained as :
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Employing now the Galerkin’s procedure, the
equation of motion is obtained as :

Af + Bf + Cf* = P(1) (32)
where in the SS case :

AS=ph2'BS=h,;4(&+lD_3. ﬂ)

PS(r) = ;_62 p(x, ¥, 1)

and in the CL case :
Ph c_nl3 2Dy
A'l6 ,B h(aD+2b2 b‘D
cC= 2h?

3
T [4—”2 (b%C; + a®C))

—(C3+C4+ Cs+Cs+ Cy) —%(c8 +c9£l
Pe@)= %p(x. Y1)

The stresses and the failure criteria are obtained as
described in Sec. 2.

4. RESULTS AND DISCUSSION

A laminate consisting of 24 plies arranged
symmetrically in the form 0°/6°/ — 6° is considered here.
The values of 6 are chosen as 30°, 45°, 60°, 75° and 90°.
The moduli for a single ply are taken from'.

E =142 GP3, E,= 9.0 GP3, G, = G, = G, =

5.5 GPa, ,,—oszv =0.02028, Fy = 1130 MPa, .F)c -
= 869 MPa, F,, = 37.2 MPa, Fpx = 145 MPa,
Fu—SlMPa

The panel is assumed to have the following -

dimensions : length 10.0 cm, width 8.0 cm and thickness
0.25 cm. Let n,, n,, n, be the number of plies inclined at
0°, 6°, — 6° to the material x-axis.

In Fig. 1, the amplitudes of non-linear oscillation of
the panel for.SS and CL boundary conditions are plotted
for both classical theory and shear deformation theory.
It is observed that the amplitude of oscillation as

.
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Figure 1. Non-linear oscillation of the cemposite panel for different
boundary conditions.

obtained from shear deformation theory is nearly 1.5
times of that given by classical theory. The distance
between the panel and the point of explosion is 4 m (so
that there is no damage). In this case n, = 24, n, = n; =
0. Following Bauer'' and Ref.(1), (W/h) = 1. In Fig. 2,
the non-linear vibrational behaviour of the clamped
panel with n, = 16, n, = n, = 4 is shown for various
values of 8 (for shear deformation theory only). Itis seen
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Figure 2. Non-linear oscillation of the composite panel for different
orientations of the plies.

that with increasing values of 6, there is a decrease in the
amplitude of vibration and also there is a gradual
reduction in the period of vibration.

Since the aircraft structure can be more closely
modelled as consisting of clamped in panels, only the
CL case has been considered to study the damage.
Damage in a particular ply is assumed to occur when the
Tsai-Hill/Hoffman criterion is violated. Since the failure
of various plies with different orientations would
correspond to various threshold distances, we have
taken the distance for which 0° plies would fail as an
overall measure of the threshold distance. The

dependence of the threshold distance on the number of
plies n, and n, inclined at £6 is shown in ‘Table 1.

Table 1. Threshold distance for composite laminate for various
orientations of plies i

No. of pliesatangles Threshold distance in m for various values of 6

r © % 30 45 60 75 90°

m o oy

24 0 0 35 35 3.5 3.5 35

20 2 2 33 33 33 3.2 32
16 4 4 3.3 3.2 3.0 2.9 29
12 6 6 33 3.1 2.9 2.8 27
8 8 8 32 3.0 2.8 2.6 2.6
4 10 10 32 29 2.6 25 2.5

It is observed that as 6 is increased, the threshold
distance decreases, thus showing a resistance to damage.
Further, for a given 6, more is the magnitude of n, (or ;)
the more is the resistance to damage. Hence, it may be
concluded that a larger number of plies inclined at the
largest possible angle 6 to the central ply would ensure a
better safety against the blast attack.
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