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Abstract. A new theory of shock dynamics (NTSD) has been derived in the form of
a finite number of compatibility conditions along shock rays. It has been used to study
the growth and decay of shock strengths for spherical and cylindrical pistons starting
from n non-zero velocity, Further a weak shock theory has been derived using a simple
perturbation method which admits an exact solution and ulso agrees with the classical
decay laws for weak spherical and cylindrical shocks.
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1. Introduction

Though the occurrence of a shock discontinuity in compressible flows and the jump
conditions across it are known for more than & century, the idea of deriving an infinite
system of compatibility conditions along shock rays (Prasad [9]) was discovered only
recently (Grinfeld |2], Maslov [7]). By truncating the infinite system of compatibility
conditions at an appropriate level, a new theory of shock dynamics (NTSD) has been
proposed (Ravindrun and Prasad [11)) which enables one to compute the position and
strength of a shock front and also to determine the flow behind the shock up to a short
distance. Lazarey, Prasad and Singh [6] used NTSD to study the growth and decay of o
plane shock originating due to an accelerating or decelerating piston. They also compared
the results from NTSD with those from Harten's total variation diminishing (TVD) finite
difference scheme (FDM) and found good agreement. It was also noted that NTSD
consumes only 0.5% of the computational time taken by FDM, while giving almost the
sume (and in some cases even better) accuracy for the solution,

The problem of blast wave propagation originating from the detonation of an explosive
has been modeled as that of & symmetrically expanding spherical or cylindrical piston by
several authors (see Stanyukovich [15], Courant and Friedrichs [1]). This problem
presents an example of a flow field in which the flow behind the shock front is highly
non-uniform due 10 a rapid decay of the flow behind the shock, which mukes the use of
Whitham's shock dynamics [18, 19] (which ignores the effects of the flow behind the
shock) inapplicable for such problems.

Another conventional approach for solving blast problem has been either the use of
self-similar solutions, valid only for a short time and a short distance from the site of
explosion (Taylor [16], Sedov [12]) or resorting to specially devised finite difference
schemes such as those due to Glimm or Godunov (see Holt [3], Peyret and Taylor [8]).
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104 S K Singh and V P Singh

The relutive efficiency of NTSD over u self-similar solution and a finite difference
solution has been examined by Singh and Singh [13] in the case of a single conservation
law,

In this paper. we apply NTSD to obtin an approximate solution to spherical and
cylindrical piston problem. A general approach for both accelerating and decelerating
cases has been presented, in particular the latter can model closely the phenomenon of
rapid decay of the flow behind the shock occurring in a blast. Further. a theory for the
propagation of weak shocks has been denived by using a simple perturbation of the
ordinary differential equations appearing in the NTSD. This solution reduces to the well
known classical results for the decay of weak spherical and cylindrical shocks.

2. Dynamical compatibility conditions

The unsteady flow of an ideal gas with constant specific heats for spherical or cylindrical
symmetry is given by the following system

dp  Op  Ou  pu

8:+“8r+ +jr-.0.

e Ou l')p

5*‘5*00 =

dp  Op wu

o Tip- W +j =0, (2.1)

where p, u, p are the density, w:locny and the pressure of the gas, 5 is the ratio of specific
heats: , r are the time and radial co-ordinates respectively and / = 1.2 for cylindrical and
spherical cases respectively.

Let r = R(1) be the position of the shock front propagating into the gas at uniform state
und at rest ahead of the shock front. We introduce the following notations

Dy=[p Ho=[u, So=1pl, (22)

where [ ] denotes the jump across the shock front: [G] = G. — G, + denotes the state
shead and — that behind the shock front. The expressions for Hq. Sy and the shock
velocity C are given by the well known Runkine-Hugoniol relations

Ho = CDy(ps — Do),  So=psDoC?(p. —Da)”",
C=a(2ps —Do)(2p. + (v = 1)Dp)™")' 7, (2.3)

where a. 15 the local sound velocity ahead of the shock. It is assumed that the flow
variables p(r. 1), u(r,1) and p(r.1) € C* behind the shock front. The following relations
can be written for the denivatives of the flow variables on the shock front

4z _oz 0z d(dzy oMz otz

dt or' A \or~ 0:():"’ arv+l
for N = 1,2,3,..., and Z(r, 1) cun be any of the flow variables p, i or p. Taking jump on
both sides in (2.4), we obtain

-t} [BA-4BA-9 e

(24)
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Spherical and cylindrical piston problem 105

We notice that the first equation in (2.5) is the first kinematical compatibility condition of
Thomas [17]. Replacing Z by p, u.p in (2.5), we get the following relations

:’;,—”T =Soy—c,, [%:_.’,’: = SDy— Dy,

%j =8y, -g%:{ =35~ crtva,

.%I:. =%So - €S}, g:;::] =£‘-SN - CSysry 26)
where

Dy = g—:"g]. Hy = [g—:;]. Sy = [% 2 (2.7)

We consider the jump of the left hand side of (2.1) across the shock front. Using (2.6),
we obtain the first set of dynamic compatibility conditions

d

a—;Uo'f'P'U. =fo, (2.8)
where
Dy
Uy = (H[.‘ y N=12... (2.9)
Sk
and
—(C+Ho) pi—Do 0
P= 0 ~(C+Hy) (ps —Dy)”" (2.10)
0 1Py = So)  —=(C+ Ho)
and
( Holp. —Dy) )
fo=—jr"' 0 . (2.11)
yHolpy — So)

To derive the second set of compatibility conditions, we differentiate (2.1) with respect
to r and take the jump of the left hand side of the resulting equation. Using (2.6), we obtain

d
aUg-‘-P-Ug =1y, (2.12)
where
H = S$\Dy(py — Do)

(7 + VH Sy +jr 4 (HoS) = (py = S1)Hy) +ir *9(py — So)Ho
(2.13)

(It may be noted that for j = 0, the system of compatibility conditions (2.8) and (2.12)
reduces to that for plane shocks, see [6] for details.)

: ( 20, Hy + jr (HoDy — (ps. — Do)H)) +1ir"(p4 — Dg)Ho )
| — .
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Repeating the same procedure, an infinite system of compatibility conditions can be
derived in the following general form
4
dr
The equations (2.8) and (2.11) are the first two members of the system (2.14),
It is obvious that for computational purposes, it is more convenient to work with a
scalar system of equations. We now describe u procedure to reduce the above system of

vector compatibility conditions into an equivalent system of scalar compatibility
conditions. We note that the eigenvalues of the matrix P are

Al =—(C+Hy), Ma=—(C+Hy)xa., (2.15)

where a_ is the sound velocity behind the shock front. As the shock strength H, tends to
zero, the shock velocity and the local sound velocity tend to a common value, say ag,
hence A; tends to zero. In this limit the first set of compatibility conditions (2.8) must
lead to the characteristic compatibility condition in which the derivative terms must be
zero. Hence, we choose the left eigenvector L corresponding to Ay:

L= (0, (p. — Dy)/2,(2a-)"")
and introduce the following notations

U~+P'UNH=f~. N=01,2... (2.14)

wy = Dy,
av=L-Uy = (p. — Dy)Hy/2+Sy(2a_)"", N=1,2,... (2.16)
Multiplying (2.8) by L, we get after some simplifications
dmy J
dn_ (m. +5Cmru). (2.17)
where
g=((ps = m)a/2 +b(2a_)"")", (2.18)
a=Ho _ Cm(4pz.+h —3)m) (2.19)
Om  2p. —m) (204 + (v — 1)m)
a B
b= -&% = dyp.pi (24 + (v = Um)’) . (2.20)
0
Next, to express Dy, Hy, S, in terms of o and m, we multiply (2.8) by P! to get

U =P-'(r -%"’-). (2.21)
Using (2.17), we get from (2.21)
Dy = jr ' Cdomo + gdy 7y,  Hy = jr 'Chyomo + by =y,
8y = jr~' Csigmo + si10my, (2.22)
where
dijo = A'(=1 + ga_/2) —aga. (2a\) ' (ps = m)
+ (AMidzha) ' (—a? + bga-/2),
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djp = MA] = a7 (p. —mo) + (A A

o = (AAs) ' (aga_Ay /2 — (—a* + bga- [2)(pi — 7o),

My = A (Ma = blps — 7)),

si0=(MXs) " (—(ps — So)aga- /2 + Ay(—a> + bga_ /2)),

51 = Ay (=(ps — So)a + Aib). (2.23)

To reduce the second compatibility condition into scalar form, we multiply the
equation (2.12) by L to obtain

% = 6,7 + G -+ Biwoms - Bemo 4 S5y — o, (2.24)
where
N2
o) = (lg) {% (s — mo) (g — (ps — 0) " $j0d10) '*“’l—o_((‘! + 1)
+4(p, —m0) ") +%sa-(hm - e-tm)}.
b= 2 (s =)0y = (s —m0) )+ D s+ ol — esn)
= -;—;_Cs{(m — 7o) (2hyohys — (o — m0) > (s10dyy + x11dio) + (v + 1)az!
x(hnoSnH'll-'xo)'*"ﬂuail(m"m)"-*%lz[hw-ﬂlo)'l-ﬂ—(hl|-¢In)}.
& =2—J’3Ca_(l — fholps —mo) ) = -%Sa—hu(P. - 7o) (2.25)
und
da. = 4
We add the equation of the shock path to the above system of compatibility conditions
dr
3-C (2.27)

where C is the shock velocity given by (2.3),

The new theory of shock dynamics (NTSD) using compatibility conditions up to the
second order is obtained by putting 7 = 0 in (2.24), The NTSD is valid for a shock of
urbitrary strength,

3. Initial conditions for accelerating or decelerating piston problem

In this section we derive the initinl conditions to solve the set of ordinary differential
equations (2.17) and (2.24) (with 73 set equal to zero) to obtain an approximate solution
for an expanding spherical or cylindrical piston. We consider the flow produced by
spherical or cylindrical piston expanding with a non-zero positive velocity and a non-zero
positive or negative acceleration into a gas at rest ahead of the piston. Let the piston
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position at time ¢ be R, (r). Mathematically, the problem consists in solving the system of
equations (2,1) with the following initial and boundary conditions

u(r,0) =0, p(r.0)=p.. plr.0)=p. forr>0 (3.1)
and
u(Ry(1),1) = R;,(:) (= piston velocity), for ¢ > 0. (3.2)

The flow variables are non-dimensionalized as follows

r=nrr, t =aﬂ-i. p=p.p. p=p,;p. C=a,C, (3.3)

where the overhead bar denotes the non-dimensional variable, ry is a characteristic length
which has been chosen as the initial radius of the piston at 1 = 0.
We take the piston path as a power series in 7

Ry(1) = Fo + Ry T+ RpaT* 4+ Rpal + -+, (3.4)

where R, =0 for j > 2 if the piston acceleration (or deceleration) is constant. We
assume that the shock path is also given by a power series

R(T) =Fo+ C1f + Ci* + G’ + - (3.5)

and also that the solution in a small neighbourhood of 7 = () can be expanded in a Taylor’s
series of the form

P=po+pu(F—Fo) + praf+-, =g+ uy(F—Fo) +upf+ -,
P=po+pulF—Try) +puaf+---, (3.6)

where y is the non-dimensional value of ry, and py. ug, po are the limiting values of the
variables p, u,p as we approach the shock front from the piston at 7 = 0.

Differentiating (3.4) and (3.5) with respect 1o 7, we get the series expansion for the
piston velocity and the shock velocity respectively. Given the coefficients Ry, J=12...,
we need to find the coefficients in (3.6) and those for the shock path in (3.5). This is quite
straightforward, but involves complex algebraic manipulations. Substituting the
expansions (3.6) into the gas-dynamic equations and equating the coefficients of various
powers of 7 and 7, we get an undetermined system of linear algebraic equations for the
coefficients appearing in (3.6),

To complete this system, we use the series expansion of various quantities appearing in
the boundary condition at the piston, namely the equation (3.2) and use the Rankine—
Hugoniot condition on the piston path (3.4) to obtain the following set of linear equations
for the determination of pyy, u)y and Cs,

Liuyy +Mpyy +N\Cy + Py =0, (3.7)
Lyuyy + Mapyy +N1Gy + P2 =0, (3.8)
Lyugy + Mipyy + NG + P =0, (3.9)

where ‘
Ly =2p(Ry, = C1), My = (R, —C1), Ny =2(py—1),
Py = (j/i'o)lbkpl(kpg -Cy) +2P0Rn-

bl
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Ly = o+ 3pm(Ry,— C1)F, Ma=(R,, = C1)', Na=4apy(R,, - C)+4C).
P3 = 4(Ry, — Ci)pRys + (iv/Fo)poRy; + (i/Fo) Ry, (Ry, — €)%
Ly = ¥po/(v = 1) +3m(Rey — C1 P 12— m(1 /(v = 1) + C1/2),
My = (Ry, — €)' /2= (Ryy — €, = )(1/(y = 1) + C}/2), Ny =2mR,,,
P3 =2poRyy (27 = 1)(C) = Ry ) /(¥ — 1) + [ J7/Fo)poRy,

+ (jipoRy, )1/ (y—= 1) + C} /2= (C1 = R,,)") 2} (3.10)

Solving the above system of algebruic equations, we get the values of the required
coefficients in (3.6). Hence, finally the initial conditions at 7 = 0, for 7y and 7 in non-
dimensional form is obtained as

7o =Ry, /(Rpy = C1), 71 = (&))" (=p11 +iCidioTo/Fo), (3.11)
where
Ci =Ry 2= + (1 +RJ2—24))' 2 (3.12)

which is obtained using Prandtl’s relation in the present case of purely radial flow (see
“]. p. 425); 3", and f-ln are the non-dimensional forms of d|o and d" mpectively. and
4= (y=1)/{7+ 1). The detailed derivations are available in [14]. We note that the
additional term jC\dyomy /7y on the right hand side of (3.12) arising purely due to the
geometry of the shock front causes an additional deceleration which accounts for the
usual geometric attenuntion for the curved shock fronts. By putting j =0 in our
equations, it 1s easily seen that the problem reduces to that of a plane shock (see [6]). In
this case it is obvious that the terms #;, j = 1,2,3 vanish if Ry, = 0, which in tum
implies that py; and consequently m; at ¢ = 0 also vanish. Physically, it corresponds to the
case of a plane piston moving with a uniform velocity giving rise to a shock of uniform
strength.

Thus, it is seen that the initial conditions for the equations (2.17), (2.24) and (2.27) are
completely determined in terms of coefficients appearing in the power series expansion of
the piston path (3.4). It is also observed that the initial condition for m; depends on the
piston velocity and the effects of any perturbation (i.e. acceleration or deceleration) in the
uniform piston velocity are contained in the initinl value for 7.

4. Approximate solution for weak shock propagation

Some interesting well known results for weak shock propagation can be obtained by
assuming that the shock strength is of the order of a small quantity ¢, i.c. we assume that

To = Zt’n&“(:). m =Zc’x‘,’)(l). (4.1)
= =0

It 1s to be noted that the expansion for 7y starts with the first power of ¢ whereas that for
7y starts with a constant term. We further assume that R(r) can also be expanded as

R(1) = i ¢/RV, (4.2)
=0



110 S K Singh and V P Singh

Substituting the above expansions into the equations of NTSD, and retaining terms only
up to first order, we obtain the following set of equations for 7, " R and R

1
".mL = _,r{,"(-%"x‘."’ +f;—r*) (43)
dr'” 441 1 ja
gis = o2 _Jas o) ;
s TR (mi") 3 )y (4.4)
dr'" dr\" + 1
@ =ay, T=-a4 (7_)”}")_ (45)

‘I'hc equanons (4.3) and (4.4) can be exactly integrated subject to initial conditions for
! and 7r‘m at r =0, say

ﬂ':)” = 0. r‘.o) =T ("6)

We note that the expansion (4.2) does not hold near the centre as r — 0, Hence we
assume that R'” # 0 (i.e. the shock front has a finite radius at 1 = 0 which indeed is the
case with conventional explosive charges), say R = r, at the initial instant. Then from
(4.5), we have

r~R% =pm+a.r. (4.7)

Plane case: In this case, j = 0 and the equations (4.5) are not required. The solution to
the equations (4.3) and (4.4) when integrated with the initinl conditions (4.6) are

m =mo(l = (74 Nmot/(2p4)) ", (4.8)
7o = (] = (7 + Dmot/(20.))"'2. (4.9)

Cylindrical case: In this case (i.c. when j = 1) the solutions to the equations (4.3) and
(4.4) assume the following form

70 (1) = kﬂoxlo'(')/:
1 : 12 12
(ps+ v+ 1rgmpp ) (rg+a.t) "= —(y+1) g+ a t)mory
7o (0) = moo{ (ra-+a ) ((ps+ (1) rimio)— (y+ 1) miary  (ra+a,0) P12
(4.11)

Spherical case: In this case (i.c. j = 2), the solutions for (4.3) and (4.4) are given by

(4.10)

#0(s) = 2a, p, wom
(rotayn)(2a. py +(v+1mor log ro— (74 1 mere log(rn+ ast))’
(4.12)
(07—
m (1) = —(m‘*_a") (2a,py + (v + Drymyo logry
= (7 + Drymo log(r + a.r)) ™', (4.13)

Critical time: Tt is seen that if myg > 0, then the solutions given by (4.8)~(4.13) cannot be
commued beyond a time £, (called the critical time), It is also seen that as 1 — 1., 7:‘,"' and
t;, nppmch infinitely large values in each of the above cases. In fact, the weak shock
assumption breaks down before these quantities approach infinity and . is an indication

@ %
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of this. The critical time £, in the above three cases are given by

Plane case: 1. = 2p. /({7 + )mia), (4.14)
Cylindrical case: 1. = a; ' {(a;py /mo + (7 + Do) /(7 + 1)°m) = no}, (4.15)
Spherical case: 1. = a ' {exp(2a. pu /(7 + V)miory) + logra) = ra}. (4.16)

In all the above three cases, we observe that

(i) there is a positive value for #. for all positive values of 7, which corresponds to the
case of accelerating piston,

(ii) there is no finite value for t. when g is negative, (i.e. the solutions (4.8}4.13) can
be continued for all times for all negative values of m).

We also note that the case =y < 0 comresponds to the case when the slope of the
density versus spatial coordinate curve is positive, which implies that no positive finite
value for 1. exists and hence the solution can be continued for all times (see [10]).

Comparison with exact results for decay of weak shocks: Taking the limit as ¢ — 2c in
(4.9), (4.11) and (4.13), so that the terms independent of 1 can be ignored, it is seen that
the shock strength decays as ~'/2, /% and 1~'(log?)™'* for the cases of plane,
cylindrical and spherical shocks respectively. Thus, the decay rule for weak shocks from
NTSD agrees with classical results for the asymptotic decay for the cylindrical and
spherical waves (see Landau (5], Whitham [19] and also Grinfeld [2]).

5. Results and discussions

The system of ordinary differential equations (2.17) and (2.24) (with 7; = 0) and (2.27)
are solved using Runge-Kutta-Gill method. In figure 1, the case of accelerating

012

Figure 1. Decay of a cylindrical shock, originating from an initial piston velocity Ry = 0.10 and
with indicated values of accelerations Ry
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Figure 2. Decay of a sphencal shock originating from an initial piston velocity R, = 0.25 and
with indicated values of accelerations.
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Figure 3. Decay of a strong spherical shock, originating from an initial velocity R, = 15.0.

cylindrical piston is shown: the initial piston velocity R, is chosen as (.10 and the values
chosen for the acceleration Ry, are 0.01, 0.05, 0.10, 0.15 and 0.20 respectively. In figure 2,
the case of accelerating spherical piston is shown corresponding to Ry, =0.25 and R,,, =
0.00. 0.25, 0.50, 0.75 and 0.86 respectively. The attenuation of the shock solely due to the
geometrical effects is obvious in these curves. It is also observed (as in figure 2) that to
maintain the initial strength of the shock (i.e. to overcome the effects of geometrical
attenuations), a considerable amount of constant acceleration is required.

In figure 3. attenuation of a very strong spherical shock corresponding to R, = 15.0
with varying amounts of decelerations R, = 0.00, —0.50, —1.00 and —5.00 is shown.
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Figure 4. Initial values of =, at ¢ =0 as functions of the piston accelerations Ry for the plane,
cylindrical and spherical cases.

Since, in an actual blast phenomenon, the strong spherical or cylindrical shock front is
attenunted due to geometrical effects as well as the rarefaction waves following it, the
decelerating spherical or cylindrical piston problem may serve as a simplified and
approximate model to represent the actual phenomenon. For comparison, we have also
plotted the time decay curve for 1000kg TNT at a distance of 1 m from the point of
detonation (see Kinney and Graham [4]). We have chosen this particular example as the
particle velocity in this case is comparable with the piston velocity under consideration at
t = 0. For this problem ry = 0.548 m and 7 = 620r. Since in an actual blast, the decay
pattern depends on a number of factors such as the chemical composition of the explo-
sive, its packing density etc. which are not included in our mathematical formulation, it
may explain the deviation of NTSD results from the experimental curves,

As described in §3, the valve of =, depends on the piston acceleration (or
deceleration) Ry,. For a typical case of R, = 0.25, we have plotted |, against R, in
figure 4 for the plane, cylindrical and spherical cases. The relationship is nearly linear. It
is also seen thut 7|, = 0 for the plane case whereas it has small nonzero positive values
for the cases of curved pistons.

As indicated in §§3 and 4, the value of the critical time £, would depend upon the
piston acceleration. We have tabulated the values of « for a typical case of R, = 0.25
and R,, varying from 0.25 o 5.0 in table 1. It is observed that with gradual increase in
R, the plane shock reaches the strong shock limit (ie.my— S0 and my —ocast — 1.
in almost all the cases. The curved shocks behave in a different way: they continue to
decay in the presence of comparatively smaller values of piston acceleration (as they do
in its absence). It is seen that there is a threshold value for R, below which the curved
shocks decay. There is another threshold value for Ry, up to which the strength of a
curved shock reaches a constant value in a finite time. The entry ‘con’ in the table | refers
to this value and 1 is the time at which this constant shock strength is reached. Beyond this
second threshold value for Ry, the shock strength grows until it attains the strong shock
limit and 7, — ¢ at t = £ where the NTSD algorithm breaks down.
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Table L. Critical times 1. for R, = 0.25,

Ry Plane Cylindrical Spherical
0.25 con' sd s
0.50 26.3960 con? sd
0.75 17.579] con’ con"
1.00 13.1743 con* con’
1.25 10,5197 con® con'’
1.50 8.7600 con® con'!
1.75 7.5052 con’ con'?
2.00 65601 175.4784 con'?
225 5.8251 254558 con'!
2.50 5.2401 15.7289 con'?
275 4.7601 11.6196 con'®
3.00 43551 92849 con'’
3.25 4.0201 7.7552 con'"
3.50 3.7301 6.6701 con'’
375 3.4751 5.8601 44,0306
4.00 3.2551 5.2301 17.3091
425 3.0601 47201 11.7045
4.50 2.8900 43051 9.0350
475 2.7350 3.9551 7.4201
5.00 2.5950 3.6601 6.3301

where sd: shock decays, con': 7y = 5.0000 at r = 52 8258, con®: my = 039028 at t = 54.1351,
con'; my = 1.0B578 at r = 37.6291, con*: my = 1.78331 at 1 = 35.5953. con’: o = 248500 at
1 =41.0972, con®: 7y = 3,19524 at r = 49.4776, con’; m = 392700 at r = 71.6121, con:":
my = 0.04452 ot t = 185.5282, con”; m; = 0.39282 at r=29.5517, con'®: 7, = 0.74192 at
1= 24.1956, con'': 7y = 1.09205 at 1 = 19.3595, con'*: =, = 1.44375 at t = 19.8696, con'*:
o = L.79763 at r = 21.0199, con'?: my = 2.15451 at 1 = 202747, con'®: my = 2.51575 at
t=20.7798, con'®: my = 2.88369 at 1 = 24,0205, con'”; = = 3.26236 at t = 30,9670, con'™:
wo = 365961 at r = 35,0955, con'”: mp = 4.10130 at ¢ = 43.9806,
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