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1. INTRODUCTION

- Study of converging detonation waves in solid explosives is of immense importance
- due to its applications in the generation of high pressure and temperatures. This
problem is studied by various authors, using polytropic equation of state'” (Ref 2 to
be referred as paper I). Using solidstate equation of state® the above problem has
been studied® and thus vaniation of pressure and temperature were evaluated during
convergence. In these studies'™ it was assumed that heat of detonation per unit mass
Q remains constant during the prucess of convergence.

It is argued’ that imploding detonation wave may be partally or wholly driven
by heat released from mechanisms other than chemical reactions. Other mechanisms
for the release of heat in a gas such as radiation, conduction and ohmic heating are
possible and have the property that the heat released per unit mass is not necessarily
constant but is. in general. a function of area of convergence.
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In this paper it is assumed that heat released in chemical reaction depends on
the current detonation velocity. Equations of earlier work (Ref 6, here after to be
referred as paper II) are modified. It is seen that in the present case increase in
radiation pressure and temperature is much higher as compared to that of paper 11,
where as, there is not much change in total pressure for most of the explosives. No
experimental data is available for comparison, only theoretical results are reported.

2. FORMULATION OF PROBLEM

It was assumed in paper 11 that Q released behind the detonation front remains
constant and its value is same as that at C-] plane. But in actual practice it is observed’
that heat of formation of an explosive depends on various factors such as radiation,
conduction and ohmic heating other than chemical reactions, It is also seen that
temperature and pressure of explosive increases duc 1o shock compression during
convergence and heat released in chemical reaction is a function of temperature and
pressure® of the products. If the explosive is already at much higher pressure and
temperature due to shock compression, the composition of its reactants may change.
Also since internal energy of products is higher at higher temperatures, the heat of
detonation in this case will be different than that in normal situation. In the present
puper we have not gone for all the above factor individually but as a totality of these
elfects it is assumed that heat of detonation per unit mass Q is variable and is function
of current parameter v and U and not of ¥ and D as in paper I1. (See Appendix).

Jump conditions in the present case are same as in paper [1 except in the present
case,
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where all the symbols in the present paper are same as that in [L Solving Eqns. (1)
10 (3) and (5) to (8) of paper 11 with the help of Eqn. (1) above, we get two types of
solutions given as
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where Cis the sound velocity behind detonation front .
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where subscript C-J indicates value of parameters in C-J plane.

It can be shown that jump conditions (6 10 8) give non-overdriven detonations
and hence are ignored. Therefore we will take case 1 only as jump conditions.

In teldtions (2 to S) when y=0 onc gets jump conditions for the case when

equation of state is in the polytropic form i.c.
U= D% (12)
o s (13)
(n+1)
i, ¥ (14)
* n
In the case non-overdriven detonation, we have z=1 thus we have
U= Di"? (15)
(l+i) D
(ns D (16)
ﬂ’.- (_n:{_l)‘ (17
4

We will deal all these cases in the following section for five different CHON explosives
and compare the results with those of paper | and I1.

3. CONVERGENCE OF DETONATION WAVES

Follawing paper 11, we use the equation of motion along the positive characteristics
axis as an extra relation relating detonation parameters. The charactenistic form of
the equation of motion is
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2pc'u dR

L i i TR (18)

where R is the distance of detonation wave from the centre.
Substituting p, p, ¢ and u from (3 to 5) and (10) in above relation, one gets after
simplifications

H, %4-”, d%-ua,so (19)
where Ho (a=1-r)
Vil 4+ y)(n + D,
H, =3z (20)
4n
e
From equation of state
p=C(1+y)p" (21)
and jump conditions (2 to 5), one gets after differentiation
o Sna & o
Ny G =1 (23)
1 1 n-1-r
G”[ l+y+lgh{ =5 }] @4
solving Eqns. (19) and (22) for dy/dR and dz/dr, one gets
& __ -H
dR " (3Gi+H;) (25)
 _ AGH
dR  (3G:+H,)H; (26)

Equations (25) and (26) are differential equations giving variation of y and z as a
lunaionofR.Onceymd:mmwnothet!uncﬁommbemhuedfmjump
conditions.

4. DISCUSSION

Equations (25) and (26) are integrated by using Runge-Kutta method of fourth
order and results are shown in Figs. 1 10 6. In Fig. 4, it is seen that in the present
case y increases continuously while in the case of paper 11, y first decreased and then
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increased, rate of increase of y in the present case is much higher than that of paper
11 (Table 1), Pressure in the present case is higher in the beginning but becomes lower
after some distance in the case of a few explosives, say, TNT and Tetryl (Table 2).
This phenomena is really surprising, as quantity of heat Q continuously increases with
convergence (Fig. 3). Effect of Q in this case is mainly on the variation of y i.e. on
radiation pressure, which is more in the present case as compared to the earlier case.
This radiation pressure is responsible for the increase of temperature in the present
case.
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In the present paper, we have taken Q to be function of y and U/, and thus Q is
continuously increasing function of U. It is known that chemical reaction depends on
temperature and pressure of the reactants and also internal energy of products increases

with the temperature. Since the explosive is already at higher temperature and pressure
because of shock compression, the total heat liberated by it will obviously be higher.

In the present work, we have not tried to evaluate Q at different temperatures,

but as a totality of these factors, it was assumed that Q is a function of current varinbles
yand U instead of C-J parameters y and D,

In Fig. 6, we have plotted Q/Q mﬂ‘!;(otu:ccaeofm llhneenOO
increases lincarly with T, lnﬁpl dand 5, plp ' VY and'nT mplonedmm
R/R, lonypial@q:lodch'l'NT foﬂhepumtweandmmltsmmwcdwnh
thonereponedehewhae It is seen (Fig 2) that U/D is higher in the present case as
emnpnfcdtothatofplpallwheunmhﬂy is much higher in the present
case (Fig. 4). From Fig. 5, nnmnmukmmlbctcmpcmnreulhomudu
higher than that of earlier case. Variation of y, z and T is shown in Table 1, 2 and 3
respectively for various explosives.

In Fig. 1, we have plotted p/p_ versus R/R , for the two cases y=0 and y#0,
Results are compared with that of paper I1. It is seen that in the present case, plp
is higher in the beginning, but becomes little lower near the centre in a few cues.

say, TNT and Tetryl.

5. CONCLUSION

It is concluded that the rate of increase of pressure with respect to distance is
not as high as that of temperature or in other words the thermal pressure. Thus near
the centre, contribution of pressure towards the thermal part is much more than that
towards the elastic part.
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APPENDIX
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F ~ Inthe relation (5), c,, I, Tare respectively the specific heat of constant volume, the
= Gmindsenmmmdthctcmpeummofdcmﬂonpmdthdtsudmo(

charge i.¢. of Chapman-Jouguet plane (C-J planc),

U=D
y=y
Hctcyhdenneduthcnxbo(thewwmewelnﬂewmdhﬁm
as in ref. 4.
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where Cis defined in ref. 7, v, nrespectively are specific volume (=1/p) and polytropic
constant of the explosive.

Total detonation pressure is given as

p-bp'-} ﬁ—:-—l. ™

and internal energy E is given as
(%)

E= PN (n-i)y]



