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Converging shock waves in metals
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1, Introduction

The study of propagation of converging shock waves is of immense importance for
the production of very high pressure and temperature. Singh (1978) (hereafter re-
ferred to as 1) has studied propagation of imploding detonation waves in solid explo-
sives by using Whitham's (1958) as well as Chisnell's (1957) method. Earlier Abarba-
nel (1967) has also used this method to study propagation of detonation wayes in a
converging channel, and found detonation velocities numerically.

Following the technique, used in I, an attempt has been made here to study the
propagation of spherically converging shocks in various metals. In this analysis, it
has been assumed that the shock wave would continue to move with constant velocity
if the area of cross-section of the flow does not change. This assumption implies
that the parameters of the shock wave are affected only by the convergence in the
flow. Further the transmission of shock wave in the spherical metal target has
been assumed to take place from spherical explosive pad in which detonation
wave has converged to give a pressure higher than that of Chapman Joguet pressure
of the explosive. In order to support the contention that Whitham's method is
sufficiently accurate for analysing converging shock waves in solids and also to
obtain the sufficiently accurate boundary values of shock parameters at metal
explosive interface, a comparison of experimental results of velocity of detonation
waves with those calculated on the basis of Whitham’s method in 1 has been made,

2. Formulation of the problem

Let us consider a conical section of a solid sphere as the medium for shock wave
propagation and assume that a spherical shock wave, having radius of curvature
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matching the solid sphere, is induced at the base of the cone and it propagates
towards its apex without suffering any attenuation due to any rarefaction from the
sides or from the base of the cone. If the apex is taken as the origin and R as the
radius of curvature, then the equations of conservation of mass, momentum and
energy of the medium are given by
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where r indicates the position of shock front at time 1 and p, p, ¢, and u represent the
pressure, density, sound velocity and particle velocity respectively, Further, shock
velocity, U and particle velocity, u in the metal have been assumed to be connected
by a linear relation

U=a-+bu, @)

where a and b are constants of the metal. If subscript *2' and ‘1" denote the quan-
tities behind and ahead of the shock front, then mechanical jump conditions across
the shock front are given by the expressions
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where 8 = py/p, represents the compression behind the shock front.

A relation between shock radius r and the shock compression & will be sought,
as the solution of the problem, by combining these equations with McGruneisen
equation of state of the medium. This relation can be derived by applying
Whitham’s rule to the characteristics form of equation of motion obtained by lincar
combination of equations (1) - (3).

3. Solution of the problem

Making a linear combination of equations (1) —(3) one can readily show that the
expression for the equation of motion along the positive characteristics is given by
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where ¢ denotes the adiabatic sound velocity and is related to the slope of the
Hugoniot ay by the expression (Duvall and Fowles 1963)
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Here T is a parameter of McGruneisen equation of state of the medium and is given
by the refation (McQueen er al 1978)

pT =T, an

where Ly is the constant of McGruneisen's equation of state at initial density of the
metal p,. Differentiating (5), one easily gets the expression for the slope of the
Hugoniot as

8+b(3—1) "'.

a
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Following Singh (1978) as in 1, the expressions for dp, dv, w and ¢ have been
obtained from relations (4)-(6) and (8)(10) and have been substituted in (7) which,
after simplification yields,
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Defining a dimensionless variable £ = r/R and knowing initial values of shock para-
meters at £ = |, one can readily integrate numerically the differential equation (12)
between the limits £ = | to £ = 0 to got the shock compression history from base
to apex of the conical target,
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4. Results and discussion

Initial compression of the metal accomplished by the shock transmitted at § = 1,
has been determined by combining (5) and (6) with the mismatch equation

A__ 280U (15)
pb_pDUD-i-plU'

where U, and P, denote the velocity and pressure of the detonation wave and p,
represents the initial density of the explosive,

In this analysis velocity and pressure of the detonation wave, used in (12), have
been obtained from I for a detopation wave which has converged over a thickness of
5 cm of the explosive. The explosive pad was concentric with the spherical boundary
of the metallic cone. The use of mismatch equation for computing transmitted initial
pressure in this case, therefore, implies an assumption that this equation holds good
for overdriven detonation waves with good approximation. The initial values of
shock pressure and velocity transmitted by 5 cm thick roX/TNT (60:40) explosive
pad in different metals have been presented in table 1.

To ascertain the correctness of these initial values the velocity of a converging deto-
nation wave has also been determined experimentally at different points along the
thickness of the pad by a method similar to that of Cheret and Verdes (1970). These
experimentally determined values of detonation velocity in RDX/TNT explosive of
density 1:68 gm/cc have been fitted by least square method in an equation.

Up=T8+ 14164 x + 01828 x* ..., (16)

where x is the distance in cm and Uy, is the detonation velocity in km/sec. The dis-
tance x has been measured along the radius from the outer surface of the spherical

pad of the explosive.

The experimental velocities obtained from (16) have been compared with those of
1 and were found in good agreement, along the entire thickness of the explosive,
as shown in table 1.

Table lﬁon WMMwmobulm:iuﬂm theoretical and imental
detonation velocity. The detonation wave was allowed to y over
2" 40), before transmi

lm!chmo(Sanlnmc_xrgrd pad of wox/TNT (60 ;
eonmunmdb(appurlnthnlimrmn

shock wave in
U =g + b U’
Shock parameters from  Shock parameters from
Name of the metal a b theoretical detonation  experimental detanation
velocity velocity
8 U & U

Alumininm 5328 1-338 1:383015 8464511 1:367748 832174
Copper 3940 1489 1-310918 6091105 1-297710 5984157

Beryllium 7998 1:124 1-303647  10-834512 1-:290010  10-702372
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Computer has been used to integrate (12) numerically by Runge Kutta method,
The values of constants of this equation have been taken from Kinslow (1970). The
increment of compression 8 used in the computation was 0-005. The convergence
of shock wave in aluminium, copper and beryllium has been studied, between
f=1tof=0.

The variations of shock pressure with dimensionless radius of convergence £, thus
obtained, have been shown in figure 1. The effect of variation in I on pressure dis-
tance curve is shown in figure 2, for two cases i.e. ' = Iy and I' = Ty/8. Further the
effect of initial compression on convergence has also been studied and shown in
figure 3. It depicts the variation of shock pressure of a converging wave along
dimensionless radius £ for the initial compression varying from 141 to 16,

S, Conclusion

Pressure distance curves in figure 1 show that the pressure of spherically converging
shock wave increases according to a power law

Pr* = constant, an

where K is the convergence factor of the metal. Its average value for different metals
is given in table 2. It is interesting to note that in the case of converging shocks in
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Figure 2. Comparison of shock pressure attenuation for two cases ' = 'y and

T'=TJ3
Table 2. Comparison of convergence fictors for spherically converging shock wave
in metuls and gases,
Convergence factor, K
Density Mc Gruneisen lmp u"c:m'? Fors of
Metal = Wﬁ"“‘ heat ratio  For the
2 Im metal heat ratio
Y =Um
Be 1-851 1:160 2:160 0-991 0991
Al 2785 2:00 300 1-10 1-10
Cu 8950 1499 299 113 1-10

metals, the metal behaves like a gas of specific heat ratio, y,, which is given by the
relation (Zeldowitch 1966)

Ym=To+1 (18)

where I’ is the McGruneisen's constant of uncompressed metal. This fact has been
clearly shown in figure 4, where variation of convergence factor for a spherically
converging shock wave in gases of different specific heat ratios has been plotted
along with the convergence factor of different metals as a function of specific heat
ratios, y.. It shows that the convergence of shock wave in lighter metals like beriyl-
lium and aluminium is very much similar to that of a shock wave in a gas throughout
the range of convergence considered here but heavier metals like copper show a little
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Figure 3. Variation of shock pressure in aluminium for different initial transmitted
pressures,

variation from gas-like behaviour particularly in the higher range of convergence.
Variation of pressure with the variable T is compared with that of constant T, in
figure 2.

The plot of shock pressure and distance in figure 3 reflects that the shock pressure
increases monotonically as it moves towards the centre of convergence. In a parti-
cular metal, the rate of increase in the shock pressure with the distance travelled
remains unaffected with the initial value of the shock pressure trunsmitted at the base
of the metallic cone. These curves indicate an infinite pressure of the shock wave
near the centre as it presents a point of singularity in this analysis.

The fact that the experimental values of detonation velocity and compression are
in good agreement with the theoretical values obtained earlier by the present method
of analysis, suggest that the Whitham rule of characteristics and mismatch equation
holds good for analysing spherically converging shock waves with adequate accuracy
upto sufficiently near to the centre of convergence.

It is interesting to note from (13) that the variation of shock compression along
the radius of curvature does not explicitly depend on any material property of the
metal except the McGruneisen constant I, and the constant b of (4).
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