
 Expectation value: 

In quantum mechanics, the expectation value is the 

predicted mean value of the result (measurement) 

of an experiment. Despite the name, it is not the 

most probable value of a measurement. It is a 

fundamental concept in all areas of quantum 

physics. 

Operational definition 

Quantum physics shows an inherent statistical behavior: The measured outcome of an 

experiment will generally not be the same if the experiment is repeated several times. Only the 

statistical mean of the measured values, averaged over a large number of runs of the experiment, 

is a repeatable quantity. Quantum theory does not, in fact, predict the result of individual 

measurements, but only their statistical mean. This predicted mean value is called the 

expectation value. 

While the computation of the mean value of experimental results is very much the same as in 

classical statistics, its mathematical representation in the formalism of quantum theory differs 

significantly from classical measure theory. 

 Formalism in quantum mechanics 

In quantum theory, an experimental setup is described by the observable to be measured, and 

the state of the system. The expectation value of in the state is denoted as . 

Mathematically, is a self-adjoint operator on a Hilbert space. In the most commonly used case 

in quantum mechanics, is a pure state, described by a normalized
.
 Vector in the Hilbert 

space. The expectation value of in the state is defined as 

.                  (  1) 

If dynamics is considered, either the vector or the operator is taken to be time-dependent, 

depending on whether the Schrödinger picture or Heisenberg picture is used. The time-

dependence of the expectation value does not depend on this choice, however. 
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If has a complete set of eigenvectors , with eigenvalues , then (1) can be expressed as 

               ( 2) 

This expression is similar to the arithmetic mean, and illustrates the physical meaning of the 

mathematical formalism: The eigenvalues are the possible outcomes of the experiment, and 

their corresponding coefficient is the probability that this outcome will occur; it is 

often called the transition probability. 

A particularly simple case arises when is a projection, and thus has only the eigenvalues 0 and 

1. This physically corresponds to a "yes-no" type of experiment. In this case, the expectation 

value is the probability that the experiment results in "1", and it can be computed as 

(3)      . 

In quantum theory, also operators with non-discrete spectrum are in use, such as the position 

operator in quantum mechanics. This operator does not have eigenvalues, but has a 

completely continuous spectrum. In this case, the vector can be written as a complex-valued 

function on the spectrum of (usually the real line). For the expectation value of the 

position operator, one then has the formula 

(4)      . 

A similar formula holds for the momentum operator , in systems where it has continuous 

spectrum. 

All the above formulae are valid for pure states only. Prominently in thermodynamics, also 

mixed states are of importance; these are described by a positive trace-class operator 

, the statistical operator or density matrix. The expectation value then can 

be obtained as 

(5)      . 

General formulation 

In general, quantum states are described by positive normalized linear functional on the set of 

observables, mathematically often taken to be a C* algebra. The expectation value of an 

observable is then given by 
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(6)      . 

If the algebra of observables acts irreducibly on a Hilbert space, and if is a normal functional, 

that is, it is continuous in the ultraweak topology, then it can be written as 

 

with a positive trace-class operator of trace 1. This gives formula (5) above. In the case of a 

pure state, is a projection onto a unit vector . Then , which gives 

formula (1) above. 

is assumed to be a self-adjoint operator. In the general case, its spectrum will neither be 

entirely discrete nor entirely continuous. Still, one can write in a spectral decomposition, 

 

with a projector-valued measure . For the expectation value of in a pure state 

, this means 

, 

which may be seen as a common generalization of formulas (2) and (4) above. 

In non-relativistic theories of finitely many particles (quantum mechanics, in the strict sense), the 

states considered are generally normal. However, in other areas of quantum theory, also non-

normal states are in use: They appear, for example. in the form of KMS states in quantum 

statistical mechanics of infinitely extended media
 
 and as charged states in quantum field theory. 

In these cases, the expectation value is determined only by the more general formula (6). 

Example in configuration space 

As an example, let us consider a quantum mechanical particle in one spatial dimension, in the 

configuration space representation. Here the Hilbert space is , the space of square-

integrable functions on the real line. Vectors are represented by functions , called 

wave functions. The scalar product is given by . The wave 

functions have a direct interpretation as a probability distribution: 
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gives the probability of finding the particle in an infinitesimal interval of length about some 

point . 

As an observable, consider the position operator , which acts on wave functions by 

. 

The expectation value, or mean value of measurements, of performed on a very large number 

of identical independent systems will be given by 

. 

The expectation value only exists if the integral converges, which is not the case for all vectors 

. This is because the position operator is unbounded, and has to be chosen from its domain 

of definition. 

In general, the expectation of any observable can be calculated by replacing with the 

appropriate operator. For example, to calculate the average momentum, one uses the momentum 

operator in configuration space, . Explicitly, its expectation value is 

. 

Not all operators in general provide a measureable value. An operator that has a pure real 

expectation value is called an observable and its value can be directly measured in experiment. 

 2nd topic: 

The Ehrenfest theorem, named after Paul Ehrenfest, the Austrian physicist and mathematician, 

relates the time derivative of the expectation value for a quantum mechanical operator to the 

commutator of that operator with the Hamiltonian of the system. It is 

 

where A is some QM operator and is its expectation value. Ehrenfest's theorem is obvious in 

the Heisenberg picture of quantum mechanics, where it is just the expectation value of the 

Heisenberg equation of motion. 

Ehrenfest's theorem is closely related to Liouville's theorem from Hamiltonian mechanics, which 

involves the Poisson bracket instead of a commutator. In fact, it is a rule of thumb that a theorem 
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in quantum mechanics which contains a commutator can be turned into a theorem in classical 

mechanics by changing the commutator into a Poisson bracket and multiplying by . This 

causes the operator expectation values to obey their corresponding classical equations of motion 

provided the Hamiltonian is at most quadratic in the coordinates and momenta. Otherwise, the 

equations still may hold approximately, provided fluctuations are small. 

Derivation 

Suppose some system is presently in a quantum state . If we want to know the instantaneous 

time derivative of the expectation value of A, that is, by definition 

 

 

where we are integrating over all space. If we apply the Schrödinger equation, we find that 

 

and 

 

Notice because the Hamiltonian is hermitian. Placing this into the above equation we 

have 

 

Often (but not always) the operator A is time independent, so that its derivative is zero and we 

can ignore the last term. 

 General example 

For the very general example of a massive particle moving in a potential, the Hamiltonian is 

simply 
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where is just the location of the particle. Suppose we wanted to know the instantaneous change 

in momentum . Using Ehrenfest's theorem, we have 

 

since the operator commutes with itself and has no time dependence. By expanding the right-

hand-side, replacing p by , we get 

 

After applying the product rule on the second term, we have 

 

 

 

but we recognize this as Newton's second law. This is an example of the correspondence 

principle, the result manifests as Newton's second law in the case of having so many particles 

that the net motion is given exactly by the expectation value of a single particle. 

Similarly we can obtain the instantaneous change in the position expectation value. 

 

 

 

 

This result is again in accord with the classical equation. 

Notes 

1. In bra-ket notation  
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where is the Hamiltonian operator, and H is the Hamiltonian represented in coordinate 

space (as is the case in the derivation above). In other words, we applied the adjoint 

operation to the entire Schrödinger equation, which flipped the order of operations for H 

and . 

2. Although the expectation value of the momentum , which is a real-number-valued 

function of time, will have time dependence, the momentum operator does not. Rather, 

the momentum operator is a constant linear operator on the Hilbert space of the system. 

The time dependence of the expectation value is due to the time evolution of the 

wavefunction for which the expectation value is calculated. An Ad hoc example of an 

operator which does have time dependence is , where is the ordinary position 

operator and is just the (non-operator) time 
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