
Drude theory of conduction  

 

 
Drude Model electrons (shown here in blue) constantly bounce between heavier, stationary 

crystal ions (shown in red). 

The Drude theory(model) of electrical conduction was proposed in 1900
[1][2]

 by Paul Drude to 

explain the transport properties of electrons in materials (especially metals). The model, which is 

an application of kinetic theory, assumes that the microscopic behavior of electrons in a solid 

may be treated classically and looks much like a pinball machine, with a sea of constantly 

jittering electrons bouncing and re-bouncing off heavier, relatively immobile positive ions. 

The two most significant results of the Drude model are an electronic equation of motion, 

 

and a linear relationship between current density and electric field , 

 

Here is the time and , , and , and are respectively an electron's momentum, charge, 

number density, mass, and mean free time between ionic collisions. The latter expression is 

particularly important because it explains in semi-quantitative terms why Ohm's Law, one of the 

most ubiquitous relationships in all of electromagnetism, should be true. 
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The model was extended in 1905 by Hendrik Antoon Lorentz (and hence is also known as the 

Drude–Lorentz model) and was supplemented with the results of quantum theory in 1933 by 

Arnold Sommerfeld and Hans Bethe. 

Assumptions 

The Drude model considers the metal to be formed of a mass of positively-charged ions from 

which a number of "free electrons" were detached. These may be thought to have become 

delocalized when the valence levels of the atom came in contact with the potential of the other 

atoms. 

Notwithstanding the origin of such free electrons from the contact of different potentials, the 

Drude model neglects any long-range interaction between the electron and the ions and assumes 

that the electrons do not interfere with each other. The only possible interaction is the 

instantaneous collision between a free electron and an ion, which happens with a fixed 

probability per unit time.  

 The Drude model is a purely classical model, and treats both electrons and ions as solid spheres. 

Explanations 

 DC field 

The simplest analysis of the Drude model assumes that electric field is both uniform and 

constant, and that the thermal velocity of electrons is sufficiently high such that they accumulate 

only an infinitesimal amount of momentum between collisions, which occur on average 

every seconds.  

Then an electron isolated at time will on average have been traveling for time since its last 

collision, and consequently will have accumulated momentum 

 

During its last collision, this electron will have been just as likely to have bounced forward as 

backward, so all prior contributions to the electron's momentum may be ignored, resulting in the 

expression 

 

Substituting the relations 

 

 

results in the formulation of Ohm's Law (v=ir)  mentioned above: 
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Time-varying analysis 

The dynamics may also be described by introducing an effective drag force. At time 

the average electron's momentum will be 

 

because, on average, electrons will not have experienced another collision, and the 

ones that have will contribute to the total momentum to only a negligible order.  

With a bit of algebra, this results in the differential equation 

 

where denotes average momentum and q the charge of the electrons. This, which is an 

inhomogeneous differential equation, may be solved to obtain the general solution of 

 

for p(t). The steady state solution ( ) is then 

 

As above, average momentum may be related to average velocity and this in turn may be related 

to current density, 

 

 

and the material can be shown to satisfy Ohm's Law with a DC-conductivity : 
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The Drude model can also predict the current as a response to a time-dependent electric field 

with an angular frequency , in which case 

 

Here it is assumed that 

 

 

In other conventions, is replaced by in all equations. The imaginary part indicates that the 

current lags behind the electrical field, which happens because the electrons need roughly a time 

to accelerate in response to a change in the electrical field. Here the Drude model is applied to 

electrons; it can be applied both to electrons and holes; i.e., positive charge carriers in 

semiconductors. The curves for are shown in the graph. 

Accuracy of the model 

This simple classical Drude model provides a very good explanation of DC and AC conductivity 

in metals, the Hall effect, and thermal conductivity (due to electrons) in metals near room 

temperature. The model also explains the Wiedemann-Franz law of 1853. However, it greatly 

overestimates the electronic heat capacities of metals. In reality, metals and insulators have 

roughly the same heat capacity at room temperature. Although the model can be applied to 

positive (hole) charge carriers, as demonstrated by the Hall effect, it does not predict their 

existence. 

One note of trivia surrounding the theory is that in his original paper Drude made a conceptual 

error, estimating electrical conductivity to in fact be only half of what it classically should have 

been. 

2nd 
topic  

The Fermi level  

It is a hypothetical level of potential energy for an electron inside a crystalline solid. Occupying 

such a level would give an electron (in the fields of all its neighboring nuclei) a potential energy 

equal to its chemical potential (average diffusion energy per electron) as they both appear in 

the Fermi-Dirac distribution function,  

 

which calculates the probability that an electron with energy occupies a particular single-

particle state (density of states) within such a solid. T is the absolute temperature and k is 
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Boltzmann's constant. When the exponential equals 1, and the value of describes 

the Fermi level as a state with 50% chance of being occupied by an electron for the given 

temperature of the solid. 

Suppose we want to accommodate N electros on the line. This can be done with the help of Pauli 

Exclusion Principle. in a solid the quantum nos. of an electron in a conduction electron state are  

n  and ms.   

Every energy level with a quantum no. n can accommodate 2 electrons ,one with spin up and 

other with spin down . eg. There are 8 electrons, then in ground sate of the system the level with 

n = 1,2,3,4 are filled while higher levels (n>4) are empty . suppose  we start filling the levels 

from the bottom (n=1) and continue filling the higher levels with e
-
. until all N electrons are 

accommodated . let nf denots top most filled energy level . assuming to be even we have  

2nf=N  

Which determine value of n for uppermost filled level.  

‘At absolute zero all the levels below a certain level will  be filled with electrons and all the level 

above it will be empty . the level which divides the filled and vacant levels is called Fermi level 

at absolute zero ‘ 

‘ the energy of the top most filled level at absolute zero is called Fermi energy ‘ 

 Fermi level" in semiconductor physics 

In semiconductor physics it is conventional to work mainly with unreferenced energy symbols. 

This is possible because the relevant formulas of semiconductor physics mostly contain 

differences in energy levels, for example (EC-EF). Thus, for developing the basic theory of 

semiconductors there is little merit in introducing an absolute energy reference zero. This can be 

qualitatively understood as asserting the importance of the encountered potential difference 

instead of the absolute potential difference. 

The Fermi Dirac distribution function 

The Fermi-Dirac distribution f(E) gives the probability that a single-particle state of energy E 

would be occupied by an electron (at thermodynamic equilibrium): Alternatively, it also gives 

the average number of electrons that will occupy that state due to the restriction imposed by the 

Pauli exclusion principle. 

 

where: 
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 μ is the parameter called the chemical potential (which, in general, is a function of ); 

 is the electron energy measured relative to the chemical potential; 

 is Boltzmann's constant; 

 T is the temperature. 

In particular, . 

Fermi–Dirac distribution 

For a system of identical fermions, the average number of fermions in a single-particle state , is 

given by the Fermi–Dirac (F–D) distribution, 

 

where k is Boltzmann's constant, T is the absolute temperature, is the energy of the single-

particle state , and is the chemical potential. At T = 0 K, the chemical potential is equal to the 

Fermi energy. For the case of electrons in a semiconductor, is also called the Fermi level.  

The F–D distribution is only valid if the number of fermions in the system is large enough so that 

adding one more fermion to the system has negligible effect on . Since the F–D distribution 

was derived using the Pauli exclusion principle, which allows at most one electron to occupy 

each possible state, a result is that . 

 Fermi–Dirac distribution 

  

Energy dependence. More gradual at higher T. = 0.5 when = . Not shown is that 

decreases for higher T. 
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  

Temperature dependence for . 

 

History: 

Before the introduction of Fermi–Dirac statistics in 1926, understanding some aspects of electron 

behavior was difficult due to seemingly contradictory phenomena. For example, the electronic 

heat capacity of a metal at room temperature seemed to come from 100 times fewer electrons 

than were in the electric current. It was also difficult to understand why the emission currents, 

generated by applying high electric fields to metals at room temperature, were almost 

independent of temperature. 

The difficulty encountered by the electronic theory of metals at that time was due to considering 

that electrons were (according to classical statistics theory) all equivalent. In other words it was 

believed that each electron contributed to the specific heat an amount on the order of the 

Boltzmann constant k. This statistical problem remained unsolved until the discovery of F–D 

statistics. 

F–D statistics was first published in 1926 by Enrico Fermi and Paul Dirac. According to an 

account, Pascual Jordan developed in 1925 the same statistics which he called Pauli statistics, 

but it was not published in a timely manner. Whereas according to Dirac, it was first studied by 

Fermi, and Dirac called it Fermi statistics and the corresponding particles fermions.  

F–D statistics was applied in 1926 by Fowler to describe the collapse of a star to a white 

dwarf.In 1927 Sommerfeld applied it to electrons in metals and in 1928 Fowler and Nordheim 

applied it to field electron emission from metals.  Fermi–Dirac statistics continues to be an 

important part of physics 
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3
rd

 topic 

Density of states  

‘it is defined as number of electronic states 

(or orbitals) per unit energy range , and is 

denoted by D(E) 

As we know 𝑬𝒏 =
𝒉𝟐

𝟐𝒎
(
𝒏𝝅

𝑳
)𝟐 

 

  

E =K.E. 

 

In three dimensions, the density of states of a gas of fermions is proportional to the square root of 

the kinetic energy of the particles. 

In solid-state and condensed matter physics, the density of states (DOS) of a system describes 

the number of states per interval of energy at each energy level that are available to be occupied 

by electrons. Unlike isolated systems, like atoms or molecules in gas phase, the density 
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distributions are not discrete like a spectral density but continuous. A high DOS at a specific 

energy level means that there are many states available for occupation. A DOS of zero means 

that no states can be occupied at that energy level. In general a DOS is an average over the space 

and time domains occupied by the system. Local variations, most often due to distortions of the 

original system, are often called local density of states (LDOS). If the DOS of an undisturbed 

system is zero, the LDOS can locally be non-zero due to the presence of a local potential. 

For electrons at the conduction band edge, very few states are available for the electron to 

occupy. As the electron increases in energy, the electron density of states increases and more 

states become available for occupation. However, because there are no states available for 

electrons to occupy within the bandgap, electrons at the conduction band edge must lose at least 

of energy in order to transition to another available mode. The density of states can be 

calculated for electron, photon, or phonon in QM systems. The DOS is usually represented by 

one of the symbols g, ρ, D, n, or N, and can be given as a function of either energy or wave 

vector k.  

Density of energy states 

To finish the calculation for DOS find the number of states per unit sample volume at an energy 

inside an interval . The general form of DOS of a system is given as 

 

The scheme sketched so far only applies to continuously rising and spherically symmetric 

dispersion relations. In general the dispersion relation is not spherically symmetric and in 

many cases it isn't continuously rising either. To express D as a function of E the inverse of the 

dispersion relation has to be substituted into the expression of as a function of k to 

get the expression of as a function of the energy. If the dispersion relation is not 

spherically symmetric or continuously rising and can't be inverted easily then in most cases the 

DOS has to be calculated numerically. More detailed derivations are available.  

. Applications 

The density of states appears in many areas of physics, and helps to explain a number of 

quantum mechanical phenomena. 

Quantization 

Calculating the density of states for small structures shows that the distribution of electrons 

changes as dimensionality is reduced. For quantum wires, the DOS for certain energies actually 

becomes higher than the DOS for bulk semiconductors, and for quantum dots the electrons 

become quantized to certain energies. 
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Photonic crystals 

The photon density of states can be manipulated by using periodic structures with length scales 

on the order of the wavelength of light. Some structures can completely inhibit the propagation 

of light of certain colors (energies), creating a photonic bandgap: the DOS is zero for those 

photon energies. Other structures can inhibit the propagation of light only in certain directions to 

create mirrors, waveguides, and cavities. Such periodic structures are known as photonic 

crystals. 

Calculation of the density of states 

Interesting systems are in general complex, for instance compounds, biomolecules, polymers, 

etc. Because of the complexity of these systems the analytical calculation of the density of states 

is in most of the cases impossible. Computer simulations offer a set of algorithms to evaluate the 

density of states with a high accuracy. One of these algorithms is called the Wang and Landau 

algorithm.  

Within the Wang and Landau scheme any previous knowledge of the density of states is 

required. One proceed as follows: the cost function (for example the energy) of the system is 

discretized. Each time the bin i is reached one update a histogram for the density of, states 

,by, 

 

where f is called modification factor. As soon as each bin in the histogram is visited a certain 

number of times (10-15), the modification factor is reduced by some criterion, for instance, 

 

where n denotes the n-th update step. The simulation finishes when the modification factor is less 

than a certain threshold, for instance . 

The Wang and Landau algorithm has some advantages over other common algorithms such as 

multicanonical simulations and Parallel tempering, for instance, the density of states is obtained 

as the main product of the simulation. Additionally, Wang and Landau simulations are 

completely independent of the temperature. This feature allows to compute the density of states 

of systems with very rough energy landscape such as proteins.  

4th topic  

Thermionic emission  
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The phenomenon  of emission of electrons from the surface of the metal, when it is heated , 

is called thermionic emission . 

 

 

 
Close up of the filament on a low pressure mercury gas discharge lamp showing white 

thermionic emission mix coating on the central portion of the coil. Typically made of a mixture 

of barium, strontium and calcium oxides, the coating is sputtered away through normal use, often 

eventually resulting in lamp failure. 

Thermionic emission is the heat-induced flow of charge carriers from a surface or over a 

potential-energy barrier. This occurs because the thermal energy given to the carrier overcomes 

the binding potential, also known as work function of the metal. The charge carriers can be 

electrons or ions, and in older literature are sometimes referred to as "thermions". After emission, 

a charge will initially be left behind in the emitting region that is equal in magnitude and 

opposite in sign to the total charge emitted. But if the emitter is connected to a battery, then this 

charge left behind will be neutralized by charge supplied by the battery, as the emitted charge 

carriers move away from the emitter, and finally the emitter will be in the same state as it was 

before emission. The thermionic emission of electrons is also known as thermal electron 

emission. 

The classical example of thermionic emission is the emission of electrons from a hot cathode, 

into a vacuum (archaically known as the Edison effect) in a vacuum tube. The hot cathode can 

be a metal filament, a coated metal filament, or a separate structure of metal or carbides or 

borides of transition metals. Vacuum emission from metals tends to become significant only for 

temperatures over 1000 K. The science dealing with this phenomenon has been known as 

thermionics, but this name seems to be gradually falling into disuse. 

The term "thermionic emission" is now also used to refer to any thermally-excited charge 

emission process, even when the charge is emitted from one solid-state region into another. This 

process is crucially important in the operation of a variety of electronic devices and can be used 

for electricity generation (e.g., thermionic converter, electrodynamic tether) or cooling. The 

magnitude of the charge flow increases dramatically with increasing temperature. 
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5th topic 

Richardson's Law 

In any solid metal, there are one or two electrons per atom that are free to move from atom to atom. 

This is sometimes collectively referred to as a "sea of electrons". Their velocities follow a statistical 

distribution, rather than being uniform, and occasionally an electron will have enough velocity to exit 

the metal without being pulled back in. The minimum amount of energy needed for an electron to 

leave a surface is called the work function. The work function is characteristic of the material and for 

most metals is on the order of several electron volts. Thermionic currents can be increased by 

decreasing the work function. This often-desired goal can be achieved by applying various oxide 

coatings to the wire. 

In 1901 Richardson published the results of his experiments: the current from a heated wire seemed 

to depend exponentially on the temperature of the wire with a mathematical form similar to the 

Arrhenius equation. Later, he proposed that the emission law should have the mathematical form  

 

where J is the emission current density [SI unit: A/m
2
], T is the thermodynamic temperature of the 

metal [SI unit: kelvin (K)], W is the work function of the metal, k is the Boltzmann constant, and AG 

is a parameter discussed next. 

Taking the logarithm of both sides 

 

Thus, the equation showing the relationship between current densities at two temperatures is 

 

 

In the period 1911 to 1930, as physical understanding of the behaviour of electrons in metals 

increased, various different theoretical expressions (based on different physical assumptions) were 

put forwards for AG, by Richardson, Saul Dushman, Ralph H. Fowler, Arnold Sommerfeld and 

Lothar Wolfgang Nordheim. Over 60 years later, there is still no consensus amongst interested 

theoreticians as to what the precise form of the expression for AG should be, but there is agreement 

that AG must be written in the form 
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where λR is a material-specific correction factor that is typically of order 0.5, and A0 is a universal 

constant given by  

 

where m and −e are the mass and charge of an electron, and h is Planck's constant. 

In fact, by about 1930 there was agreement that, due to the wave-like nature of electrons, some 

proportion rav of the outgoing electrons would be reflected as they reached the emitter surface, so the 

emission current density would be reduced, and λR would have the value (1-rav). Thus, one 

sometimes sees the thermionic emission equation written in the form 

. 

However, a modern theoretical treatment by Modinos assumes that the band-structure of the emitting 

material must also be taken into account. This would introduce a second correction factor λB into λR, 

giving . Experimental values for the "generalized" coefficient AG are 

generally of the order of magnitude of A0, but do differ significantly as between different emitting 

materials, and can differ as between different crystallographic faces of the same material. At least 

qualitatively, these experimental differences can be explained as due to differences in the value of λR. 

Considerable confusion exists in the literature of this area because: (1) many sources do not 

distinguish between AG and A0, but just use the symbol A (and sometimes the name "Richardson 

constant") indiscriminately; (2) equations with and without the correction factor here denoted by λR 

are both given the same name; and (3) a variety of names exist for these equations, including 

"Richardson equation", "Dushman's equation", "Richardson-Dushman equation" and "Richard-Laue-

Dushman equation". In the literature, the elementary equation is sometimes given in circumstances 

where the generalized equation would be more appropriate, and this in itself can cause confusion. To 

avoid misunderstandings, the meaning of any "A-like" symbol should always be explicitly defined in 

terms of the more fundamental quantities involved. 
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